Computing eigenvalues of semi-infinite quasi-Toeplitz matrices

被引:0
作者
D. A. Bini
B. Iannazzo
B. Meini
J. Meng
L. Robol
机构
[1] University of Pisa,
[2] University of Perugia,undefined
[3] Ocean University of China,undefined
来源
Numerical Algorithms | 2023年 / 92卷
关键词
Toeplitz matrices; Eigenvalues; Infinite matrices; Nonlinear eigenvalue problem; MATLAB; Operators; Spectrum; 15A18; 15B05; 47A75; 65F15; 65H17;
D O I
暂无
中图分类号
学科分类号
摘要
A quasi-Toeplitz (QT) matrix is a semi-infinite matrix of the form A=T(a)+E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A=T(a)+E$$\end{document} where T(a) is the Toeplitz matrix with entries (T(a))i,j=aj-i\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(T(a))_{i,j}=a_{j-i}$$\end{document}, for aj-i∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{j-i}\in \mathbb {C}$$\end{document}, i,j≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i,j\ge 1$$\end{document}, while E is a matrix representing a compact operator in ℓ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^2$$\end{document}. The matrix A is finitely representable if ak=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_k=0$$\end{document} for k<-m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k<-m$$\end{document} and for k>n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k>n$$\end{document}, given m,n>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m,n>0$$\end{document}, and if E has a finite number of nonzero entries. The problem of numerically computing eigenpairs of a finitely representable QT matrix is investigated, i.e., pairs (λ,v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\lambda ,\varvec{v})$$\end{document} such that Av=λv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\varvec{v}=\lambda \varvec{v}$$\end{document}, with λ∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in \mathbb {C}$$\end{document}, v=(vj)j∈Z+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{v}=(v_j)_{j\in \mathbb {Z}^+}$$\end{document}, v≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{v}\ne 0$$\end{document}, and ∑j=1∞|vj|2<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sum }_{j=1}^\infty |v_j|^2<\infty$$\end{document}. It is shown that the problem is reduced to a finite nonlinear eigenvalue problem of the kind WU(λ)β=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$WU(\lambda )\varvec{\beta }=0$$\end{document}, where W is a constant matrix and U depends on λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document} and can be given in terms of either a Vandermonde matrix or a companion matrix. Algorithms relying on Newton’s method applied to the equation det WU(λ)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$WU(\lambda )=0$$\end{document} are analyzed. Numerical experiments show the effectiveness of this approach. The algorithms have been included in the CQT-Toolbox [Numer. Algorithms 81 (2019), no. 2, 741–769].
引用
收藏
页码:89 / 118
页数:29
相关论文
共 50 条
[31]   Distribution of eigenvalues of real symmetric palindromic Toeplitz matrices and circulant matrices [J].
Massey, Adam ;
Miller, Steven J. ;
Sinsheimer, John .
JOURNAL OF THEORETICAL PROBABILITY, 2007, 20 (03) :637-662
[32]   Distribution of Eigenvalues of Real Symmetric Palindromic Toeplitz Matrices and Circulant Matrices [J].
Adam Massey ;
Steven J. Miller ;
John Sinsheimer .
Journal of Theoretical Probability, 2007, 20 :637-662
[33]   On Asymptotics of Eigenvalues of Seven-Diagonal Toeplitz Matrices [J].
Voronin, I. V. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2024, 64 (06) :1159-1166
[34]   Distribution of Eigenvalues for the Ensemble of Real Symmetric Toeplitz Matrices [J].
Christopher Hammond ;
Steven J. Miller .
Journal of Theoretical Probability, 2005, 18 :537-566
[36]   ON THE EXTREME EIGENVALUES OF TOEPLITZ AND REAL HANKEL INTERVAL MATRICES [J].
HERTZ, D .
MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 1993, 4 (01) :83-90
[37]   Distribution of eigenvalues for the ensemble of real symmetric Toeplitz matrices [J].
Hammond, C ;
Miller, SJ .
JOURNAL OF THEORETICAL PROBABILITY, 2005, 18 (03) :537-566
[38]   m-functions and inverse spectral analysis for finite and semi-infinite Jacobi matrices [J].
Gesztesy, F ;
Simon, B .
JOURNAL D ANALYSE MATHEMATIQUE, 1997, 73 :267-297
[39]   A matrix-less and parallel interpolation–extrapolation algorithm for computing the eigenvalues of preconditioned banded symmetric Toeplitz matrices [J].
Sven-Erik Ekström ;
Carlo Garoni .
Numerical Algorithms, 2019, 80 :819-848
[40]   Eigenvalues for a class of non-Hermitian tetradiagonal Toeplitz matrices [J].
Bogoya, Manuel ;
Gasca, Juanita ;
Grudsky, Sergei M. .
JOURNAL OF SPECTRAL THEORY, 2025, 15 (01) :441-477