Computing eigenvalues of semi-infinite quasi-Toeplitz matrices

被引:0
作者
D. A. Bini
B. Iannazzo
B. Meini
J. Meng
L. Robol
机构
[1] University of Pisa,
[2] University of Perugia,undefined
[3] Ocean University of China,undefined
来源
Numerical Algorithms | 2023年 / 92卷
关键词
Toeplitz matrices; Eigenvalues; Infinite matrices; Nonlinear eigenvalue problem; MATLAB; Operators; Spectrum; 15A18; 15B05; 47A75; 65F15; 65H17;
D O I
暂无
中图分类号
学科分类号
摘要
A quasi-Toeplitz (QT) matrix is a semi-infinite matrix of the form A=T(a)+E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A=T(a)+E$$\end{document} where T(a) is the Toeplitz matrix with entries (T(a))i,j=aj-i\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(T(a))_{i,j}=a_{j-i}$$\end{document}, for aj-i∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{j-i}\in \mathbb {C}$$\end{document}, i,j≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i,j\ge 1$$\end{document}, while E is a matrix representing a compact operator in ℓ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^2$$\end{document}. The matrix A is finitely representable if ak=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_k=0$$\end{document} for k<-m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k<-m$$\end{document} and for k>n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k>n$$\end{document}, given m,n>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m,n>0$$\end{document}, and if E has a finite number of nonzero entries. The problem of numerically computing eigenpairs of a finitely representable QT matrix is investigated, i.e., pairs (λ,v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\lambda ,\varvec{v})$$\end{document} such that Av=λv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\varvec{v}=\lambda \varvec{v}$$\end{document}, with λ∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in \mathbb {C}$$\end{document}, v=(vj)j∈Z+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{v}=(v_j)_{j\in \mathbb {Z}^+}$$\end{document}, v≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{v}\ne 0$$\end{document}, and ∑j=1∞|vj|2<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sum }_{j=1}^\infty |v_j|^2<\infty$$\end{document}. It is shown that the problem is reduced to a finite nonlinear eigenvalue problem of the kind WU(λ)β=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$WU(\lambda )\varvec{\beta }=0$$\end{document}, where W is a constant matrix and U depends on λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document} and can be given in terms of either a Vandermonde matrix or a companion matrix. Algorithms relying on Newton’s method applied to the equation det WU(λ)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$WU(\lambda )=0$$\end{document} are analyzed. Numerical experiments show the effectiveness of this approach. The algorithms have been included in the CQT-Toolbox [Numer. Algorithms 81 (2019), no. 2, 741–769].
引用
收藏
页码:89 / 118
页数:29
相关论文
共 50 条
[21]   Approximation of eigenvalues of Sturm-Liouville problems defined on a semi-infinite domain [J].
Mebirouk, AbdelMouemin ;
Bouheroum-Mentri, Sabria ;
Aceto, Lidia .
APPLIED MATHEMATICS AND COMPUTATION, 2020, 369
[22]   SIMPLE BOUNDS ON THE EXTREME EIGENVALUES OF TOEPLITZ MATRICES [J].
HERTZ, D .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (01) :175-176
[23]   Distribution of eigenvalues of Toeplitz matrices with smooth entries [J].
Lubinsky, D. S. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 633 :332-365
[24]   SHELL EXTREMAL EIGENVALUES OF TRIDIAGONAL TOEPLITZ MATRICES [J].
Chorianopoulos, Christos .
ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2023, 39 :572-590
[25]   Computations with infinite Toeplitz matrices and polynomials [J].
Bini, DA ;
Gemignani, L ;
Meini, B .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 343 :21-61
[26]   Computing eigenvalues of quasi-generalized Vandermonde matrices to high relative accuracy [J].
Yang, Zhao .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 406
[27]   ON EFFICIENTLY COMPUTING THE EIGENVALUES OF LIMITED-MEMORY QUASI-NEWTON MATRICES [J].
Erway, Jennifer B. ;
Marcia, Roummel F. .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2015, 36 (03) :1338-1359
[28]   Spectra of Semi-Infinite Quantum Graph Tubes [J].
Shipman, Stephen P. ;
Tillay, Jeremy .
LETTERS IN MATHEMATICAL PHYSICS, 2016, 106 (10) :1317-1343
[29]   Asymptotics of eigenvalues of simple multiloop banded Toeplitz matrices of a special type [J].
S. A. Zolotykh ;
V. A. Stukopin .
Mathematical Notes, 2017, 102 :575-579
[30]   Asymptotics of eigenvalues of simple multiloop banded Toeplitz matrices of a special type [J].
Zolotykh, S. A. ;
Stukopin, V. A. .
MATHEMATICAL NOTES, 2017, 102 (3-4) :575-579