Deep Learning Based Approach of Emotion Detection and Grading System

被引:0
作者
机构
[1] Department of Computer Science and Engineering,
[2] Institute of Technology,undefined
[3] Nirma University,undefined
来源
Pattern Recognition and Image Analysis | 2020年 / 30卷
关键词
facial expression recognition; emotional expression grading or quantification; deep learning; committee convolutional neural network;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:726 / 740
页数:14
相关论文
共 59 条
  • [1] Wingenbach T. S.H.(2016)Validation of the Amsterdam Dynamic Facial Expression Set–Bath Intensity Variations (ADFES–BIV): A set of videos expressing low, intermediate, and high intensity emotions PloS ONE 11 e0147112-275
  • [2] Ashwin C.(2003)Automatic facial expression analysis: A survey Pattern Recognit. 36 259-2324
  • [3] Brosnan M.(1998)Gradient-based learning applied to document recognition Proc. IEEE 86 2278-75
  • [4] Fasel B.(2017)Video-based emotion recognition in the wild using deep transfer learning and score fusion Image Vision Comput. 65 66-598
  • [5] Luettin J.(2007)The emotion recognition task: A paradigm to measure the perception of facial emotional expressions at different intensities Perceptual Motor Skills 104 589-1445
  • [6] LeCun Y.(2012)The MPI facial expression database—a validated database of emotional and conversational facial expressions PloS ONE 7 e32321-132
  • [7] Kaya H.(2000)Automatic analysis of facial expressions: The state of the art IEEE Trans. Pattern Anal. Mach. Intell. 22 1424-598
  • [8] Gürpınar F.(2014)Cross-database evaluation for facial expression recognition Pattern Recognit. Image Anal. 24 124-928
  • [9] Salah A. A.(2007)Facial expression recognition based on local binary patterns Pattern Recognit. Image Anal. 17 592-559
  • [10] Montagne B.(2007)Dynamic texture recognition using local binary patterns with an application to facial expressions IEEE Trans. Pattern Anal. Mach. Intell. 29 915-140