Super-Resolution of Positive Sources on an Arbitrarily Fine Grid

被引:0
作者
Veniamin I. Morgenshtern
机构
[1] University of Erlangen-Nuremberg,Chair of Multimedia Communications and Signal Processing
来源
Journal of Fourier Analysis and Applications | 2022年 / 28卷
关键词
Super-resolution; Sparsity; Inverse problem; Convex optimization; Linear programming; Single-molecule super-resolution microscopy; Spectrum extrapolation; 65T40; 65T99; 65Z05;
D O I
暂无
中图分类号
学科分类号
摘要
In super-resolution it is necessary to locate with high precision point sources from noisy observations of the spectrum of the signal at low frequencies capped by flo\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{\mathrm {lo}}$$\end{document}. In the case when the point sources are positive and are located on a grid, it has been recently established that the super-resolution problem can be solved via linear programming in a stable manner and that the method is nearly optimal in the minimax sense. The quality of the reconstruction critically depends on the Rayleigh regularity of the support of the signal; that is, on the maximum number of sources that can occur within an interval of side length about 1/flo\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/f_{\mathrm {lo}}$$\end{document}. This work extends the earlier result and shows that the conclusion continues to hold when the locations of the point sources are arbitrary, i.e., the grid is arbitrarily fine. The proof relies on new interpolation constructions in Fourier analysis.
引用
收藏
相关论文
共 108 条
[1]  
Azaïs JM(2015)Spike detection from inaccurate samplings Appl. Comput. Harmon. Anal. 38 177-195
[2]  
de Castro Y(2020)Conditioning of partial nonuniform Fourier matrices with clustered nodes SIAM J. Matrix Anal. Appl. 41 199-220
[3]  
Gamboa F(2020)Super-resolution of near-colliding point sources Inf Inference 73 134-154
[4]  
Batenkov D(2013)On the accuracy of solving confluent Prony systems SIAM J. Appl. Math. 313 1642-1645
[5]  
Demanet L(2006)Imaging intracellular fluorescent proteins at nanometer resolution Science 27 616-639
[6]  
Goldman G(2017)The alternating descent conditional gradient method for sparse inverse problems SIAM J. Optim. 36 49-62
[7]  
Yomdin Y(1988)Signal enhancement—A composite property mapping algorithm IEEE Trans. Acoust. Speech Signal Process. 19 1229-1254
[8]  
Batenkov D(2013)Super-resolution from noisy data J. Fourier Anal. Appl. 67 906-956
[9]  
Goldman G(2014)Towards a mathematical theory of super-resolution Commun. Pure Appl. Math. 904 012015-1720
[10]  
Yomdin Y(2017)A low-rank approach to off-the-grid sparse deconvolution J. Phys. 37 1703-1194