Graph regularized discriminative non-negative matrix factorization for face recognition

被引:1
|
作者
Xianzhong Long
Hongtao Lu
Yong Peng
Wenbin Li
机构
[1] Shanghai Jiao Tong University,Department of Computer Science and Engineering
[2] Shanghai Jiao Tong University,Department of Diagnostic and Interventional Radiology, Affiliated Sixth People’s Hospital
来源
Multimedia Tools and Applications | 2014年 / 72卷
关键词
Non-negative matrix factorization; Graph Laplacian; Discriminative information; Face recognition;
D O I
暂无
中图分类号
学科分类号
摘要
Non-negative matrix factorization (NMF) has been widely employed in computer vision and pattern recognition fields since the learned bases can be interpreted as a natural parts-based representation of the input space, which is consistent with the psychological intuition of combining parts to form a whole. In this paper, we propose a novel constrained nonnegative matrix factorization algorithm, called the graph regularized discriminative non-negative matrix factorization (GDNMF), to incorporate into the NMF model both intrinsic geometrical structure and discriminative information which have been essentially ignored in prior works. Specifically, both the graph Laplacian and supervised label information are jointly utilized to learn the projection matrix in the new model. Further we provide the corresponding multiplicative update solutions for the optimization framework, together with the convergence proof. A series of experiments are conducted over several benchmark face datasets to demonstrate the efficacy of our proposed GDNMF.
引用
收藏
页码:2679 / 2699
页数:20
相关论文
共 50 条
  • [1] Graph regularized discriminative non-negative matrix factorization for face recognition
    Long, Xianzhong
    Lu, Hongtao
    Peng, Yong
    Li, Wenbin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2014, 72 (03) : 2679 - 2699
  • [2] Robust automated graph regularized discriminative non-negative matrix factorization
    Xianzhong Long
    Jian Xiong
    Lei Chen
    Multimedia Tools and Applications, 2021, 80 : 14867 - 14886
  • [3] Robust automated graph regularized discriminative non-negative matrix factorization
    Long, Xianzhong
    Xiong, Jian
    Chen, Lei
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (10) : 14867 - 14886
  • [4] An improve face representation and recognition method based on graph regularized non-negative matrix factorization
    Wan, Minghua
    Lai, Zhihui
    Ming, Zhong
    Yang, Guowei
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (15) : 22109 - 22126
  • [5] An improve face representation and recognition method based on graph regularized non-negative matrix factorization
    Minghua Wan
    Zhihui Lai
    Zhong Ming
    Guowei Yang
    Multimedia Tools and Applications, 2019, 78 : 22109 - 22126
  • [6] Discriminant Graph Regularized Non-negative Matrix Factorization (DGNMF) for Face Rrecognition
    Wan, Minghua
    Gai, Shan
    2ND INTERNATIONAL CONFERENCE ON COMMUNICATION AND TECHNOLOGY (ICCT 2015), 2015, : 93 - 101
  • [7] Face recognition with non-negative matrix factorization
    Rajapakse, M
    Wyse, L
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING 2003, PTS 1-3, 2003, 5150 : 1838 - 1847
  • [8] Robust Adaptive Graph Regularized Non-Negative Matrix Factorization
    He, Xiang
    Wang, Qi
    Li, Xuelong
    IEEE ACCESS, 2019, 7 : 83101 - 83110
  • [9] Graph regularized sparse non-negative matrix factorization for clustering
    Deng, Ping
    Wang, Hongjun
    Li, Tianrui
    Zhao, Hui
    Wu, Yanping
    DEVELOPMENTS OF ARTIFICIAL INTELLIGENCE TECHNOLOGIES IN COMPUTATION AND ROBOTICS, 2020, 12 : 987 - 994
  • [10] Weighted Fisher Non-negative Matrix Factorization for Face Recognition
    Zhang, Yong
    Guo, Jianhu
    2009 SECOND INTERNATIONAL SYMPOSIUM ON KNOWLEDGE ACQUISITION AND MODELING: KAM 2009, VOL 1, 2009, : 232 - 235