High order explicit versus quasi-linear implicit finite-difference approximation for semiconductor device time-domain macroscopic modelling on parallel computer

被引:0
作者
Ali El Moussati
C. Dalle
机构
[1] Institut d’électronique,
[2] de microélectronique et de nanotechnologie,undefined
[3] CNRS,undefined
[4] Cité scientifique,undefined
来源
Journal of Computational Electronics | 2006年 / 5卷
关键词
Macroscopic modelling; Finite-difference method; IMPATT diode; Parallel computing;
D O I
暂无
中图分类号
学科分类号
摘要
Bipolar semiconductor device 2D FDTD modelling suited to parallel computing is investigated in this paper. The performance of a second order explicit approximation, namely the Nessyahu-Tadmor scheme (NT2) associated with the decomposition domain method, are compared to a classical quasi-linear implicit one based on the Alternating Direction Implicit method (ADI). The comparison is performed both from the numerical stability point of view by means of drift-diffusion and energy-momentum simulations and from the computation efficiency point of view. The test structure is a millimetre-wave IMPATT diode the RF as well as internal operation of which is highly non linear. The results demonstrate that high order explicit approximations compete with implicit approximations and allow the development of efficient models well suited to the parallel computation.
引用
收藏
页码:235 / 240
页数:5
相关论文
共 17 条
  • [1] Blotekjaer K.(1970)Transport equations for electrons in two-valley semiconductors IEEE Trans. Electr. Dev. 17 38-47
  • [2] Reiser M.(1972)Large scale numerical simulation of microwave gallium arsenide submicronic gate field effect transistor Comput. Methods Appl. Mech. Engrg. 1 17-38
  • [3] Selberherr S.(1980)MINIMOS—A two dimensional MOS transistor analyser IEEE Trans. Electr. Dev. 27 1540-1550
  • [4] Schütz A.(1991)Numerical simulation of a steady-state electron shock wave in a submicrometer semiconductor device IEEE Trans. Electr. Dev. 38 392-398
  • [5] Pötzl H.W.(1990)A transient numerical scheme for the simulation of GaAs MESFETs and circuits Solid-State Electr 12 1519-1524
  • [6] Gardner C.L.(1990)Non-oscillatory central differencing for hyperbolic conservation laws J. Comput. Phys. 87 408-463
  • [7] Xiao S.(1998)Third order nonoscillatory central scheme for hyperbolic conservation laws Numerishe Mathematik 79 397-425
  • [8] Huang C.(1991)Solution of the hydrodynamic device model using high-order nonoscillatory shock capturing algorithms IEEE Trans. Comput.-Aid. Design 10 232-244
  • [9] Nessyahu H.(1989)Drift-diffusion versus energy model for millimetre-wave IMPATT diodes modelling J. Numer. Model.: Electr. Networks, Dev. Fields 2 61-73
  • [10] Tadmor E.(undefined)undefined undefined undefined undefined-undefined