GHWs of codes derived from the incidence matrices of some graphs

被引:0
|
作者
Hamid Reza Maimani
Maryam Mohammadpour Sabet
Modjtaba Ghorbani
机构
[1] Shahid Rajaee Teacher Training University,Department of Mathematics, Faculty of Science
来源
Computational and Applied Mathematics | 2022年 / 41卷
关键词
Generalized Hamming weight; Linear code; Complete graph; Complete bipartite graph; Triangular graph; The Kneser graph ; 2); Incidence matrix; 05C50; 05C70; 11T71;
D O I
暂无
中图分类号
学科分类号
摘要
By the rth generalized Hamming weight of a linear code C, denoted by dr(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ d_{r}(C) $$\end{document}, we mean the smallest support size of any r-dimensional subcode of C. In this paper, we determine the rth generalized Hamming weight of the binary linear code C(G) with the parity check matrix A(G) , where the underlying graph G is a complete graph, a complete bipartite graph, a triangular graph or the Kneser graph K(n, 2) , and A(G) is the incidence matrix of G. We also obtain the rth generalized Hamming weight of the dual code of C(G) .
引用
收藏
相关论文
共 42 条
  • [41] Infinite Classes of Six-Weight Linear Codes Derived from Weakly Regular Plateaued Functions
    Mesnager, Sihem
    Smak, Ahmet
    2020 INTERNATIONAL CONFERENCE ON INFORMATION SECURITY AND CRYPTOLOGY (ISCTURKEY 2020), 2020, : 93 - 100
  • [42] ON SOME CODES FROM RANK 3 PRIMITIVE ACTIONS OF THE SIMPLE CHEVALLEY GROUP G2(q)
    Le, Tung
    Rodrigues, Bernardo G.
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2023, 17 (01) : 207 - 226