GHWs of codes derived from the incidence matrices of some graphs

被引:0
|
作者
Hamid Reza Maimani
Maryam Mohammadpour Sabet
Modjtaba Ghorbani
机构
[1] Shahid Rajaee Teacher Training University,Department of Mathematics, Faculty of Science
来源
Computational and Applied Mathematics | 2022年 / 41卷
关键词
Generalized Hamming weight; Linear code; Complete graph; Complete bipartite graph; Triangular graph; The Kneser graph ; 2); Incidence matrix; 05C50; 05C70; 11T71;
D O I
暂无
中图分类号
学科分类号
摘要
By the rth generalized Hamming weight of a linear code C, denoted by dr(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ d_{r}(C) $$\end{document}, we mean the smallest support size of any r-dimensional subcode of C. In this paper, we determine the rth generalized Hamming weight of the binary linear code C(G) with the parity check matrix A(G) , where the underlying graph G is a complete graph, a complete bipartite graph, a triangular graph or the Kneser graph K(n, 2) , and A(G) is the incidence matrix of G. We also obtain the rth generalized Hamming weight of the dual code of C(G) .
引用
收藏
相关论文
共 42 条
  • [1] GHWs of codes derived from the incidence matrices of some graphs
    Maimani, Hamid Reza
    Sabet, Maryam Mohammadpour
    Ghorbani, Modjtaba
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (04)
  • [2] Codes from incidence matrices of some regular graphs
    Saranya, R.
    Durairajan, C.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (04)
  • [3] Codes from incidence matrices of some Bouwer graphs
    Saranya, R.
    Durairajan, C.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (03)
  • [4] GHWs of Codes Arising from Cartesian Product of Graphs
    Hamid Reza Maimani
    Maryam Mohammadpour Sabet
    Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 1689 - 1709
  • [5] GHWs of Codes Arising from Cartesian Product of Graphs
    Maimani, Hamid Reza
    Sabet, Maryam Mohammadpour
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (04) : 1689 - 1709
  • [6] Linear codes from incidence matrices of unit graphs
    Annamalai, N.
    Durairajan, C.
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2021, 42 (08) : 1943 - 1950
  • [7] Codes from incidence matrices of (n, 1)-arrangement graphs and (n, 2)-arrangement graphs
    Saranya, R.
    Durairajan, C.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (02) : 373 - 393
  • [8] The weight distribution of hulls of binary codes from incidence matrices of complete graphs
    Kumwenda, Khumbo
    Namondwe, Caleb
    QUAESTIONES MATHEMATICAE, 2023, 46 (05) : 981 - 992
  • [9] Codes from the incidence matrices of a zero-divisor graphs
    Annamalai, N.
    Durairajan, C.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2023, 26 (02) : 377 - 385
  • [10] Hulls of codes from incidence matrices of connected regular graphs
    D. Ghinelli
    J. D. Key
    T. P. McDonough
    Designs, Codes and Cryptography, 2014, 70 : 35 - 54