Mesh-based Nelder–Mead algorithm for inequality constrained optimization

被引:0
作者
Charles Audet
Christophe Tribes
机构
[1] École Polytechnique de Montréal,GERAD and Département de Mathématiques et Génie Industriel
来源
Computational Optimization and Applications | 2018年 / 71卷
关键词
Nelder–Mead; MADS; Derivative-free optimization; Blackbox optimization; Constrained optimization;
D O I
暂无
中图分类号
学科分类号
摘要
Despite the lack of theoretical and practical convergence support, the Nelder–Mead (NM) algorithm is widely used to solve unconstrained optimization problems. It is a derivative-free algorithm, that attempts iteratively to replace the worst point of a simplex by a better one. The present paper proposes a way to extend the NM algorithm to inequality constrained optimization. This is done through a search step of the mesh adaptive direct search (Mads) algorithm, inspired by the NM algorithm. The proposed algorithm does not suffer from the NM lack of convergence, but instead inherits from the totality of the Mads convergence analysis. Numerical experiments show an important improvement in the quality of the solutions produced using this search step.
引用
收藏
页码:331 / 352
页数:21
相关论文
共 89 条
  • [1] Audet C(2008)Nonsmooth optimization through mesh adaptive direct search and variable neighborhood search J. Global Optim. 41 299-318
  • [2] Béchard V(2006)Mesh adaptive direct search algorithms for constrained optimization SIAM J. Optim. 17 188-217
  • [3] Le Digabel S(2009)A progressive barrier for derivative-free nonlinear programming SIAM J. Optim. 20 445-472
  • [4] Audet C(2008)Parallel space decomposition of the mesh adaptive direct search algorithm SIAM J. Optim. 19 1150-1170
  • [5] Dennis JE(2014)Reducing the number of function evaluations in mesh adaptive direct search algorithms SIAM J. Optim. 24 621-642
  • [6] Audet C(2018)Order-based error for managing ensembles of surrogates in derivative-free optimization J. Global Optim. 70 645-675
  • [7] Dennis JE(2016)Dynamic scaling in the mesh adaptive direct search algorithm for blackbox optimization Optim. Eng. 17 333-358
  • [8] Audet C(2013)An extension of Nelder–Mead method to nonlinear mixed-integer optimization problems Rev. Int. Métod. Numér. Cálc Diseño Ing. 29 163-174
  • [9] Dennis JE(2006)Grid restrained Nelder–Mead algorithm Comput. Optim. Appl. 34 359-375
  • [10] Le Digabel S(2012)Stochastic Nelder–Mead simplex method—a new globally convergent direct search method for simulation optimization Eur. J. Oper. Res. 220 684-694