Weak and strong structures and the T3.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T_{3.5}}$$\end{document} property for generalized topological spaces

被引:0
作者
E. Makai
E. Peyghan
B. Samadi
机构
[1] MTA Alfréd Rényi Institute of Mathematics,Department of Mathematics, Faculty of Science
[2] Arak University,undefined
关键词
generalized topology; weak and strong structure; product; sum; subspace; quotient; normal; compact; Lindelöf; -compact; ordered generalized topological space; primary 54A05; secondary 54B30;
D O I
10.1007/s10474-016-0653-7
中图分类号
学科分类号
摘要
We investigate weak and strong structures for generalized topological spaces, among others products, sums, subspaces, quotients, and the complete lattice of generalized topologies on a given set. Also we introduce T3.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T_{3.5}}$$\end{document} generalized topological spaces and give a necessary and sufficient condition for a generalized topological space to be a T3.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T_{3.5}}$$\end{document} space: they are exactly the subspaces of powers of a certain natural generalized topology on [0,1]. For spaces with at least two points here we can have even dense subspaces. Also, T3.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T_{3.5}}$$\end{document} generalized topological spaces are exactly the dense subspaces of compact T4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T_4}$$\end{document} generalized topological spaces. We show that normality is productive for generalized topological spaces. For compact generalized topological spaces we prove the analogue of the Tychonoff product theorem. We prove that also Lindelöfness (and κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa}$$\end{document}-compactness) is productive for generalized topological spaces. On any ordered set we introduce a generalized topology and determine the continuous maps between two such generalized topological spaces: for |X|,|Y|≧2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${|X|, |Y| \geqq 2}$$\end{document} they are the monotonous maps continuous between the respective order topologies. We investigate the relation of sums and subspaces of generalized topological spaces to ways of defining generalized topological spaces.
引用
收藏
页码:1 / 35
页数:34
相关论文
共 42 条
[1]  
Abd El-Monsef M. E.(1983)-open sets and Bull. Fac. Sci. Assiut Univ. A 12 77-90
[2]  
El-Deeb S. N.(2016)-continuous mappings Acta Math. Hungar. 146 50-57
[3]  
Mahmoud R. A.(1997)On countably Acta Math. Hungar. 75 65-87
[4]  
Arar M.(2002)-paracompact spaces Acta Math. Hungar. 96 351-357
[5]  
Császár Á.(2004)Generalized open sets Acta Math. Hungar. 104 63-69
[6]  
Császár Á.(2005)Generalized topology, generalized continuity Acta Math. Hungar. 106 53-66
[7]  
Császár Á.(2006)Separation axioms for generalized topologies Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 49 59-63
[8]  
Császár Á.(2007)Generalized open sets in generalized topologies Acta Math. Hungar. 115 309-313
[9]  
Császár Á.(2008)-open sets in generalized topological spaces Acta Math. Hungar. 120 351-354
[10]  
Császár Á.(2008)Normal generalized topologies Acta Math. Hungar. 121 395-400