Genetic differentiation of the Novosibirsk population of Primorsky honey bee

被引:2
作者
N. A. Zinovieva
V. A. Soloshenko
M. S. Fornara
K. S. Shatokhin
G. I. Kharchenko
A. V. Borodachev
V. I. Lebedev
E. A. Gladyr
G. M. Goncharenko
机构
[1] All-Russian Scientific-Research Institute of Animal Husbandry,
[2] Siberian Scientific-Research and Design Institute of Animal Husbandry,undefined
[3] Scientific-Research Institute of Beekeeping,undefined
关键词
microsatellites; biodiversity;
D O I
10.3103/S1068367413040241
中图分类号
学科分类号
摘要
Seven microsatellite loci were evaluated to compare the allele pool of Primorsky honeybee population (n = 90), which was introduced into the Novosibirsk region (south-western Siberia), with the populations of Middle Russian (n = 191, A.m. mellifera), Mountain Grey Caucasian (n =113, A.m. caucasica), Carniolan (n = 61, A.m. carnica) and Carpathian (n = 184, A.m. carpatica) races. The degree of genetic differentiation in Novosibirsk population using a variety of criteria (Fst, Rst (AMOVA), Nei genetic distances) was evaluated.
引用
收藏
页码:346 / 349
页数:3
相关论文
共 50 条
  • [21] The neglected bee trees: European beech forests as a home for feral honey bee colonies
    Kohl, Patrick Laurenz
    Rutschmann, Benjamin
    PEERJ, 2018, 6
  • [22] Climate change: impact on honey bee populations and diseases
    Le Conte, Y.
    Navajas, M.
    REVUE SCIENTIFIQUE ET TECHNIQUE-OFFICE INTERNATIONAL DES EPIZOOTIES, 2008, 27 (02): : 499 - 510
  • [23] Historical Changes in Honey Bee Wing Venation in Romania
    Tofilski, Adam
    Cauia, Eliza
    Siceanu, Adrian
    Visan, Gabriela Oana
    Cauia, Dumitru
    INSECTS, 2021, 12 (06)
  • [24] Detection of Spiroplasma melliferum in honey bee colonies in the US
    Zheng, Huo-Qing
    Chen, Yan Ping
    JOURNAL OF INVERTEBRATE PATHOLOGY, 2014, 119 : 47 - 49
  • [25] Authentication of honey based on a DNA method to differentiate Apis mellifera subspecies: Application to Sicilian honey bee (A-m. siciliana) and Iberian honey bee (A-m. iberiensis) honeys
    Utzeri, Valerio Joe
    Ribani, Anisa
    Fontanesi, Luca
    FOOD CONTROL, 2018, 91 : 294 - 301
  • [26] Complex population structure and haplotype patterns in the Western European honey bee from sequencing a large panel of haploid drones
    Wragg, David
    Eynard, Sonia E.
    Basso, Benjamin
    Canale-Tabet, Kamila
    Labarthe, Emmanuelle
    Bouchez, Olivier
    Bienefeld, Kaspar
    Bienkowska, Malgorzata
    Costa, Cecilia
    Gregorc, Ales
    Kryger, Per
    Parejo, Melanie
    Pinto, M. Alice
    Bidanel, Jean-Pierre
    Servin, Bertrand
    Le Conte, Yves
    Vignal, Alain
    MOLECULAR ECOLOGY RESOURCES, 2022, 22 (08) : 3068 - 3086
  • [27] IMPACT OF HONEY BEE (APIS MELLIFERA L.) DENSITY ON WILD BEE FORAGING BEHAVIOUR
    Goras, Georgios
    Tananaki, Chrysoula
    Dimou, Maria
    Tscheulin, Thomas
    Petanidou, Theodora
    Thrasyvoulou, Andreas
    JOURNAL OF APICULTURAL SCIENCE, 2016, 60 (01) : 49 - 61
  • [28] Honey bee (Apis mellifera) foraging ecology in coffee landscapes and description of "coffee garden honey"
    Zavala-Olalde, Angelica
    Vandame, Remy
    Piana, Lucia
    Morales, Helda
    Colomo-Gonzalez, Idalia
    Valle-Mora, Javier
    Villanueva-Gutierrez, Rogel
    JOURNAL OF APICULTURAL RESEARCH, 2016, 55 (03) : 230 - 239
  • [29] Agroecosystem landscape diversity shapes wild bee communities independent of managed honey bee presence
    St Clair, Ashley L.
    Zhang, Ge
    Dolezal, Adam G.
    O'Neal, Matthew E.
    Toth, Amy L.
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2022, 327
  • [30] The reliability of honey bee density estimates from trapped drones
    Williamson, Elisabeth
    Groom, Scott
    Utaipanon, Patsavee
    Oldroyd, Benjamin P.
    Chapman, Nadine
    Hogendoorn, Katja
    APIDOLOGIE, 2022, 53 (06)