A New Mixed Finite Element Method for Elastodynamics with Weak Symmetry

被引:0
作者
Carlos García
Gabriel N. Gatica
Salim Meddahi
机构
[1] Universidad de Concepción,CI²MA and Departamento de Ingeniería Matemática
[2] Universidad de Oviedo,Departamento de Matemáticas, Facultad de Ciencias
来源
Journal of Scientific Computing | 2017年 / 72卷
关键词
Mixed finite elements; Elastodynamics; Error estimates; 65N30; 65M12; 65M15; 74H15;
D O I
暂无
中图分类号
学科分类号
摘要
We provide a new mixed finite element analysis for linear elastodynamics with reduced symmetry. The problem is formulated as a second order system in time by imposing only the Cauchy stress tensor and the rotation as primary and secondary variables, respectively. We prove that the resulting variational formulation is well-posed and provide a convergence analysis for a class of H(div)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {H}}(\mathop {{\mathrm {div}}}\nolimits )$$\end{document}-conforming semi-discrete schemes. In addition, we use the Newmark trapezoidal rule to obtain a fully discrete version of the problem and carry out the corresponding convergence analysis. Finally, numerical tests illustrating the performance of the fully discrete scheme are presented.
引用
收藏
页码:1049 / 1079
页数:30
相关论文
共 33 条
  • [1] Arnold DN(1984)PEERS: A new mixed finite element method for plane elasticity Japan J. Appl. Math. 1 347-367
  • [2] Brezzi F(2007)Mixed finite element methods for linear elasticity with weakly imposed symmetry Math. Comp. 76 1699-1723
  • [3] Douglas J(2014)Mixed methods for elastodynamics with weak symmetry SIAM J. Numer. Anal. 52 274-2769
  • [4] Arnold DN(2002)A new family of mixed finite elements for the linear elastodynamic problem SIAM J. Numer. Anal. 39 2109-2132
  • [5] Falk RS(2009)Reduced symmetry elements in linear elasticity Comm. Pure Appl. Anal. 8 1-28
  • [6] Winther R(2011)A priori error estimation for the dual mixed finite element method of the elastodynamic problem in a polygonal domain II J. Comput. Appl. Math. 235 1288-1310
  • [7] Arnold DN(2010)A new elasticity element made for enforcing weak stress symmetry Math. Comp. 79 1331-1349
  • [8] Lee JJ(1986)Superconvergence for a mixed finite element method for elastic wave propagation in a plane domain Numer. Math. 49 189-202
  • [9] Bécache E(1997)Dual hybrid methods for the elasticity and the Stokes problems: a unified approach Numer. Math. 76 419-440
  • [10] Joly P(2006)Analysis of a new augmented mixed finite element method for linear elasticity allowing Math. Model. Numer. Anal. 40 1-28