Convergence of Eigenfunctions of a Steklov-Type Problem in a Half-Strip with a Small Hole

被引:0
作者
Davletov D.B. [1 ]
Davletov O.B. [2 ]
机构
[1] M. Akmulla Bashkir State Pedagogical University, Ufa
[2] Ufa State Petroleum Technological University, Ufa
关键词
47A10; 58J37; convergence; eigenvalue; half-strip; singular perturbation; small hole; Steklov problem;
D O I
10.1007/s10958-019-04444-1
中图分类号
学科分类号
摘要
We consider a Steklov-type problem for the Laplace operator in a half-strip containing a small hole with the Dirichlet conditions on the lateral boundaries and the boundary of the hole and the Steklov spectral condition on the base of the half-strip. We prove that eigenvalues of this problem vanish as the small parameter (the “diameter” of the hole) tends to zero. © 2019, Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:549 / 555
页数:6
相关论文
共 14 条
[1]  
Borisov D.I., On a PT-symmetric waveguide with a pair of small holes, Tr. Inst. Mat. Mekh. Ural. Otdel. Ross. Akad. Nauk, 18, 2, pp. 22-37, (2012)
[2]  
Davletov D.B., Singularly perturbed Dirichlet boundary-value problem for a stationary system in the linear elasticity theory, Izv. Vyssh. Uchebn. Zaved. Mat., 12, pp. 7-16, (2008)
[3]  
Davletov D.B., Asymptotics of eigenvalues of the Dirichlet boundary-value problem for the Lamé operator in a three-dimensional domain with a small cavity, Zh. Vychisl. Mat. Mat. Fiz., 48, 10, pp. 1847-1858, (2008)
[4]  
Davletov D.B., Asymptotics of eigenvalues of the two-dimensional Dirichlet boundary-value problem for the Lamé operator in a domain with a small hole, Mat. Zametki, 93, 4, pp. 537-548, (2013)
[5]  
Dnestrovskii Y.N., On the change of eigenvalues when the boundary of the domain changes, Vestn. Mosk. Univ. Ser. Mat. Mekh., 9, pp. 61-74, (1964)
[6]  
A boundary-value problem for the second-order elliptic equation in a domain with a narrow slit. 2. Domain with a small cavity, Mat. Sb., 103, 2, pp. 265-284, (1977)
[7]  
On the asymptotic of solutions of an elliptic boundary-value problem with a small hole, Tr. Semin. Petrovskogo, 6, pp. 77-82, (1982)
[8]  
Kamotskii I.V., Nazarov S.A., Spectral problems in singularly perturbed domains and self-adjoint extensions of differential operators, Tr. Saint Petersburg Mat. Obshch., 6, pp. 151-212, (1998)
[9]  
Kato T., Perturbation Theory for Linear Operators, (1966)
[10]  
Maz'ya V.G., Nazarov S.A., Plamenevskii B.A., Asymptotic expansions of eigenvalues of boundary-value problems for the Laplace operator in domains with small holes, Izv. Akad. Nauk SSSR Ser. Mat., 48, 2, pp. 347-371, (1984)