Subgradient Algorithm on Riemannian Manifolds

被引:0
作者
O. P. Ferreira
P. R. Oliveira
机构
[1] Universidade Federal de Goiás,Instituto de Matemática e Estatistica
[2] Universidade Federal do Rio de Janeiro,Programa de Engenharia de Sistemas e Computação, COPPE
来源
Journal of Optimization Theory and Applications | 1998年 / 97卷
关键词
Nondifferentiable optimization; convex programming; subgradient methods; Riemannian manifolds;
D O I
暂无
中图分类号
学科分类号
摘要
The subgradient method is generalized to the context of Riemannian manifolds. The motivation can be seen in non-Euclidean metrics that occur in interior-point methods. In that frame, the natural curves for local steps are the geodesies relative to the specific Riemannian manifold. In this paper, the influence of the sectional curvature of the manifold on the convergence of the method is discussed, as well as the proof of convergence if the sectional curvature is nonnegative.
引用
收藏
页码:93 / 104
页数:11
相关论文
共 50 条
[31]   Fast optimization algorithm on Riemannian manifolds and its application in low-rank learning [J].
Chen, Haoran ;
Sun, Yanfeng ;
Gao, Junbin ;
Hu, Yongli ;
Yin, Baocai .
NEUROCOMPUTING, 2018, 291 :59-70
[32]   Conformally symmetric manifolds and quasi conformally recurrent Riemannian manifolds [J].
Mantica, Carlo Alberto ;
Suh, Young Jin .
BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2011, 16 (01) :66-77
[33]   Hardy inequalities on Riemannian manifolds and applications [J].
D'Ambrosio, Lorenzo ;
Dipierro, Serena .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (03) :449-475
[34]   Random Cech complexes on Riemannian manifolds [J].
Bobrowski, Omer ;
Oliveira, Goncalo .
RANDOM STRUCTURES & ALGORITHMS, 2019, 54 (03) :373-412
[35]   On the Calculus of Limiting Subjets on Riemannian Manifolds [J].
Hejazi, Mansoureh Alavi ;
Hosseini, Seyedehsomayeh ;
Pouryayevali, Mohamad R. .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2013, 10 (01) :593-607
[36]   Learning and approximation by Gaussians on Riemannian manifolds [J].
Gui-Bo Ye ;
Ding-Xuan Zhou .
Advances in Computational Mathematics, 2008, 29 :291-310
[37]   On the radial limits of mappings on Riemannian manifolds [J].
Mihai Cristea .
Analysis and Mathematical Physics, 2023, 13
[38]   Unscented Kalman Filtering on Riemannian Manifolds [J].
Søren Hauberg ;
François Lauze ;
Kim Steenstrup Pedersen .
Journal of Mathematical Imaging and Vision, 2013, 46 :103-120
[39]   Wasserstein barycenters over Riemannian manifolds [J].
Kim, Young-Heon ;
Pass, Brendan .
ADVANCES IN MATHEMATICS, 2017, 307 :640-683
[40]   Counting nodal domains in Riemannian manifolds [J].
Harold Donnelly .
Annals of Global Analysis and Geometry, 2014, 46 :57-61