Interpolation error estimates for mean value coordinates over convex polygons

被引:0
|
作者
Alexander Rand
Andrew Gillette
Chandrajit Bajaj
机构
[1] CD-adapco,Department of Mathematics
[2] University of California,Department of Computer Science, Institute for Computational Engineering and Sciences
[3] San Diego,undefined
[4] University of Texas at Austin,undefined
来源
Advances in Computational Mathematics | 2013年 / 39卷
关键词
Barycentric coordinates; Interpolation; Finite element method; 65D05; 65N15; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
In a similar fashion to estimates shown for Harmonic, Wachspress, and Sibson coordinates in Gillette et al. (Adv Comput Math 37(3), 417–439, 2012), we prove interpolation error estimates for the mean value coordinates on convex polygons suitable for standard finite element analysis. Our analysis is based on providing a uniform bound on the gradient of the mean value functions for all convex polygons of diameter one satisfying certain simple geometric restrictions. This work makes rigorous an observed practical advantage of the mean value coordinates: unlike Wachspress coordinates, the gradients of the mean value coordinates do not become large as interior angles of the polygon approach π.
引用
收藏
页码:327 / 347
页数:20
相关论文
共 38 条