Testing machine learning based systems: a systematic mapping

被引:0
作者
Vincenzo Riccio
Gunel Jahangirova
Andrea Stocco
Nargiz Humbatova
Michael Weiss
Paolo Tonella
机构
[1] Università della Svizzera Italiana (USI),
来源
Empirical Software Engineering | 2020年 / 25卷
关键词
Systematic mapping; Systematic review; Software testing; Machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:5193 / 5254
页数:61
相关论文
共 74 条
  • [1] Altman NS(1992)An introduction to kernel and nearest-neighbor nonparametric regression Amer Stat 46 175-185
  • [2] Borg M(2019)Safely entering the deep: a review of verification and validation for machine learning and a challenge elicitation in the automotive industry J Autom Softw Eng 1 1-19
  • [3] Englund C(1998)A unified framework for cohesion measurement in object-oriented systems Empir Softw Eng 3 65-117
  • [4] Wnuk K(1999)A unified framework for coupling measurement in object-oriented systems IEEE Trans Softw Eng 25 91-121
  • [5] Duran B(2016)On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study Data Min Knowl Discov 30 891-927
  • [6] Levandowski C(2018)A comprehensive self-driving car test Commun ACM 61 7-7
  • [7] Gao S(2016)Combination and mutation strategies to support test data generation in the context of autonomous vehicles IJES 8 464-482
  • [8] Tan Y(2005)Supporting controlled experimentation with testing techniques: an infrastructure and its potential impact EMSE 10 405-435
  • [9] Kaijser H(2014)You are the only possible oracle: Effective test selection for end users of interactive machine learning systems IEEE Trans Softw Eng 40 307-323
  • [10] Lönn H(2007)Cross versus within-company cost estimation studies: a systematic review IEEE Trans Softw Eng 33 316-329