Onset of pattern formation in thin ferromagnetic films with perpendicular anisotropy

被引:0
|
作者
Birger Brietzke
Hans Knüpfer
机构
[1] Heidelberg University,Institute of Applied Mathematics
[2] Heidelberg University,Institute of Applied Mathematics & IWR
来源
Calculus of Variations and Partial Differential Equations | 2023年 / 62卷
关键词
78A30; 49S05; 78A99; 49K20;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the onset of pattern formation in an ultrathin ferromagnetic film of the form Ωt:=Ω×[0,t]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _t:= \Omega \times [0,t]$$\end{document} for Ω⋐R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \Subset \mathbb {R}^2$$\end{document} with preferred perpendicular magnetization direction. The relative micromagnetic energy is given by E[M]=∫Ωtd2|∇M|2+Q∫Ωt(M12+M22)+∫R3|H(M)|2-∫R3|H(e3χΩt)|2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \mathcal {E}[M]= \int _{\Omega _t} d^2 |\nabla M|^2+ Q \int _{\Omega _t} (M_1^2+M_2^2) + \int _{\mathbb {R}^3} |\mathcal {H}(M)|^2 - \int _{\mathbb {R}^3} |\mathcal {H}(e_3 \chi _{\Omega _t})|^2, \end{aligned}$$\end{document}describing the energy difference for a given magnetization M:R3→R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M: \mathbb {R}^3 \rightarrow \mathbb {R}^3$$\end{document} with |M|=χΩt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|M| = \chi _{\Omega _t}$$\end{document} and the uniform magnetization e3χΩt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_3 \chi _{\Omega _t}$$\end{document}. For t≪d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \ll d$$\end{document}, we derive the scaling of the minimal energy and a BV-bound in the critical regime, where the base area of the film has size of order |Ω|12∼(Q-1)-12de2πdtQ-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\Omega |^{{\frac{1}{2}}} \sim (Q-1)^{{-\frac{1}{2}}} d e^{\frac{2\pi d}{t} \sqrt{Q-1}}$$\end{document}. We furthermore investigate the onset of non-trivial pattern formation in the critical regime depending on the size of the rescaled film.
引用
收藏
相关论文
共 50 条
  • [1] Onset of pattern formation in thin ferromagnetic films with perpendicular anisotropy
    Brietzke, Birger
    Knuepfer, Hans
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (04)
  • [2] Reduced energies for thin ferromagnetic films with perpendicular anisotropy
    Di Fratta, Giovanni
    Muratov, Cyrill B.
    Slastikov, Valeriy V.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2024, 34 (10): : 1861 - 1904
  • [3] INFLUENCE OF PERPENDICULAR AND PARALLEL ANISOTROPY ON FERROMAGNETIC PROPERTIES OF THIN FILMS
    CORCIOVE.A
    COSTACHE, G
    PHYSICA STATUS SOLIDI, 1966, 16 (01): : 329 - &
  • [4] Ferromagnetic resonance in epitaxial FePd thin films with perpendicular anisotropy
    BenYoussef, J
    Le Gall, H
    Vukadinovic, N
    Gehanno, V
    Marty, A
    Samson, Y
    Gilles, B
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1999, 202 (2-3) : 277 - 284
  • [5] Magnetic Domains in Thin Ferromagnetic Films with Strong Perpendicular Anisotropy
    Knuepfer, Hans
    Muratov, Cyrill B.
    Nolte, Florian
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 232 (02) : 727 - 761
  • [6] Magnetic Domains in Thin Ferromagnetic Films with Strong Perpendicular Anisotropy
    Hans Knüpfer
    Cyrill B. Muratov
    Florian Nolte
    Archive for Rational Mechanics and Analysis, 2019, 232 : 727 - 761
  • [7] Spontaneous Perpendicular Anisotropy in Ultra-thin Ferromagnetic Films
    Henao-Londono, J. C.
    Arbelaez-Echeverri, O. D.
    Agudelo-Giraldo, J. D.
    Restrepo-Parra, E.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2017, 30 (08) : 2107 - 2113
  • [8] Ferromagnetic resonance in epitaxial FePd thin films with perpendicular anisotropy
    Benyoussef, J.
    Le Gall, H.
    Vukadinovic, N.
    Gehanno, V.
    Marty, A.
    Samson, Y.
    Gilles, B.
    Journal of Magnetism and Magnetic Materials, 1999, 202 (02): : 277 - 284
  • [9] Spontaneous Perpendicular Anisotropy in Ultra-thin Ferromagnetic Films
    J. C. Henao-Londoño
    O. D. Arbeláez-Echeverri
    J. D. Agudelo-Giraldo
    E. Restrepo-Parra
    Journal of Superconductivity and Novel Magnetism, 2017, 30 : 2107 - 2113
  • [10] Principles of the formation of perpendicular anisotropy of thin ferrite films
    Karpasyuk, VK
    Kartashev, VS
    FIZIKA TVERDOGO TELA, 1995, 37 (09): : 2699 - 2705