Approximation to the global solution of generalized Zakharov equations in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbf{R}^{2}$\end{document}

被引:0
作者
Shujun You
机构
[1] Huaihua University,School of Mathematical Sciences
关键词
Zakharov system; Generalized Zakharov equations; Approximation;
D O I
10.1186/s13660-018-1813-9
中图分类号
学科分类号
摘要
We consider the initial value problem for the two-dimensional generalized Zakharov equations which model the propagation of Langmuir waves in plasmas. It is obtained that the solutions of the two-dimensional generalized Zakharov equations converge as α→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha\to0$\end{document} to a solution of the Zakharov equations. Both weak and strong solutions are considered.
引用
收藏
相关论文
共 39 条
  • [1] Zakharov V.E.(1972)Collapse of Langmuir waves Sov. Phys. JETP 35 908-914
  • [2] Ozawa T.(1992)The nonlinear Schrödinger limit and the initial layer of the Zakharov equations Differ. Integral Equ. 5 721-745
  • [3] Tsutsumi Y.(1988)Equations of Langmuir turbulence and nonlinear Schrödinger equation: smoothness and approximation J. Funct. Anal. 79 183-210
  • [4] Added H.(2012)The first integral method for constructing exact and explicit solutions to nonlinear evolution equations Math. Methods Appl. Sci. 35 716-722
  • [5] Added S.(2008)An improved local well-posedness result for the one-dimensional Zakharov system J. Math. Anal. Appl. 342 1440-1454
  • [6] Aslan I.(1997)On the Cauchy problem for the Zakharov system J. Funct. Anal. 151 384-436
  • [7] Pecher H.(1994)Existence of self-similar blow-up solutions for Zakharov equation in dimension two. Part I Commun. Math. Phys. 160 173-215
  • [8] Ginibre J.(1994)Concentration properties of blow-up solutions and instability results for Zakharov equation in dimension two. Part II Commun. Math. Phys. 160 349-389
  • [9] Tsutsumi Y.(2009)New periodic and soliton wave solutions for the generalized Zakharov system and Chaos Solitons Fractals 42 1646-1654
  • [10] Velo G.(2010)-dimensional Nizhnik–Novikov–Veselov system J. Math. Anal. Appl. 365 238-253