On deformation rings of residually reducible Galois representations and R = T theorems

被引:0
作者
Tobias Berger
Krzysztof Klosin
机构
[1] University of Sheffield,School of Mathematics and Statistics
[2] Queens College,Department of Mathematics
[3] City University of New York,undefined
来源
Mathematische Annalen | 2013年 / 355卷
关键词
11F80; 11F55;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a new method of proof for R = T theorems in the residually reducible case. We study the crystalline universal deformation ring R (and its ideal of reducibility I) of a mod p Galois representation ρ0 of dimension n whose semisimplification is the direct sum of two absolutely irreducible mutually non-isomorphic constituents ρ1 and ρ2. Under some assumptions on Selmer groups associated with ρ1 and ρ2 we show that R/I is cyclic and often finite. Using ideas and results of (but somewhat different assumptions from) Bellaïche and Chenevier we prove that I is principal for essentially self-dual representations and deduce statements about the structure of R. Using a new commutative algebra criterion we show that given enough information on the Hecke side one gets an R = T-theorem. We then apply the technique to modularity problems for 2-dimensional representations over an imaginary quadratic field and a 4-dimensional representation over Q.
引用
收藏
页码:481 / 518
页数:37
相关论文
共 21 条
[1]  
Bass H.(1963)On the ubiquity of Gorenstein rings Math. Z. 82 8-28
[2]  
Berger T.(2009)On the Eisenstein ideal for imaginary quadratic fields Compos. Math. 145 603-632
[3]  
Berger T.(2009)A deformation problem for Galois representations over imaginary quadratic fields Journal de l’Institut de Math. de Jussieu 8 669-692
[4]  
Klosin K.(2011) =  Math. Ann. 349 675-703
[5]  
Berger T.(2007) theorem for imaginary quadratic fields Compos. Math. 143 290-322
[6]  
Klosin K.(2006)Saito-Kurokawa lifts and applications to the Bloch-Kato conjecture Compos. Math. 142 63-83
[7]  
Brown J.(1982)Eisenstein deformation rings Ann. Sci. École Norm. Sup. (4) 15 547-608
[8]  
Calegari F.(1999)Construction de représentations p-adiques Math. Ann. 313 141-160
[9]  
Fontaine J.-M.(2009)Level lowering for modular mod Annales de l’institut Fourier 59 81-166
[10]  
Laffaille G.(1989) representations over totally real fields J. Number Theory 31 133-141