SCANPY: large-scale single-cell gene expression data analysis

被引:0
|
作者
F. Alexander Wolf
Philipp Angerer
Fabian J. Theis
机构
[1] Institute of Computational Biology,Helmholtz Zentrum München – German Research Center for Environmental Health
[2] Technische Universität München,Department of Mathematics
来源
Genome Biology | / 19卷
关键词
Single-cell transcriptomics; Machine learning; Scalability; Graph analysis; Clustering; Pseudotemporal ordering; Trajectory inference; Differential expression testing; Visualization; Bioinformatics;
D O I
暂无
中图分类号
学科分类号
摘要
Scanpy is a scalable toolkit for analyzing single-cell gene expression data. It includes methods for preprocessing, visualization, clustering, pseudotime and trajectory inference, differential expression testing, and simulation of gene regulatory networks. Its Python-based implementation efficiently deals with data sets of more than one million cells (https://github.com/theislab/Scanpy). Along with Scanpy, we present AnnData, a generic class for handling annotated data matrices (https://github.com/theislab/anndata).
引用
收藏
相关论文
共 50 条
  • [1] SCANPY: large-scale single-cell gene expression data analysis
    Wolf, F. Alexander
    Angerer, Philipp
    Theis, Fabian J.
    GENOME BIOLOGY, 2018, 19
  • [2] Challenges and prospects in the analysis of large-scale gene expression data
    Ihmeis, JH
    Bergmann, S
    BRIEFINGS IN BIOINFORMATICS, 2004, 5 (04) : 313 - 327
  • [3] Exploiting Scientific Workflows for Large-scale Gene Expression Data Analysis
    De Stasio, Alessandro
    Ertelt, Marcus
    Kemmner, Wolfgang
    Leser, Ulf
    Ceccarelli, Michele
    2009 24TH INTERNATIONAL SYMPOSIUM ON COMPUTER AND INFORMATION SCIENCES, 2009, : 447 - +
  • [4] Benchmarking principal component analysis for large-scale single-cell RNA-sequencing
    Tsuyuzaki, Koki
    Sato, Hiroyuki
    Sato, Kenta
    Nikaido, Itoshi
    GENOME BIOLOGY, 2020, 21 (01)
  • [5] CDSKNNXMBD: a novel clustering framework for large-scale single-cell data based on a stable graph structure
    Ren, Jun
    Lyu, Xuejing
    Guo, Jintao
    Shi, Xiaodong
    Zhou, Ying
    Li, Qiyuan
    JOURNAL OF TRANSLATIONAL MEDICINE, 2024, 22 (01)
  • [6] scBFA: modeling detection patterns to mitigate technical noise in large-scale single-cell genomics data
    Li, Ruoxin
    Quon, Gerald
    GENOME BIOLOGY, 2019, 20 (01)
  • [7] Identification of metagenes and their Interactions through Large-scale Analysis of Arabidopsis Gene Expression Data
    Wilson, Tyler J.
    Lai, Liming
    Ban, Yuguang
    Ge, Steven X.
    BMC GENOMICS, 2012, 13
  • [8] CDSKNNXMBD: a novel clustering framework for large-scale single-cell data based on a stable graph structure
    Jun Ren
    Xuejing Lyu
    Jintao Guo
    Xiaodong Shi
    Ying Zhou
    Qiyuan Li
    Journal of Translational Medicine, 22
  • [9] Protocol for immunofluorescence staining and large-scale analysis to quantify microglial cell morphology at single-cell resolution in mice
    Mogensen, Frida Lind-Holm
    Ameli, Corrado
    Skupin, Alexander
    Michelucci, Alessandro
    STAR PROTOCOLS, 2024, 5 (04):
  • [10] Spacemake: processing and analysis of large-scale spatial transcriptomics data
    Sztanka-Toth, Tamas Ryszard
    Jens, Marvin
    Karaiskos, Nikos
    Rajewsky, Nikolaus
    GIGASCIENCE, 2022, 11