The obstacle problem for the infinity fractional laplacian

被引:2
作者
Moreno Mérida L. [1 ]
Vidal R.E. [2 ]
机构
[1] Universidad de Granada, Granada
[2] FaMAF, Universidad Nacional de Cordoba, (5000), Cordoba
来源
Rendiconti del Circolo Matematico di Palermo Series 2 | 2018年 / 67卷 / 1期
关键词
Infinity fractional Laplace operator; Obstacle problem; Viscosity solutions;
D O I
10.1007/s12215-016-0286-2
中图分类号
学科分类号
摘要
Given g an α-Hölder continuous function defined on the boundary of a bounded domain Ω and given ψ a continuous obstacle defined in Ω ¯ , in this article, we find u an α-Hölder extension of g in Ω with u≥ ψ. This function u minimizes the α-Hölder semi-norm of all possible extensions with these properties and it is a viscosity solution of the associated obstacle problem for the infinity fractional Laplace operator. © 2016, Springer-Verlag Italia.
引用
收藏
页码:7 / 15
页数:8
相关论文
共 15 条
[1]  
Aronsson G., On certain singular solutions of the partial differential equation ux2uxx+2uxuyuxy+uy2uyy=0, Manus. Math., 47, 1-3, pp. 133-151, (1984)
[2]  
Aronsson G., Crandall M., Juutinen P., A tour of the theory of absolutely minimizing functions, Bull. Am. Math. Soc., 41, 4, pp. 439-505, (2004)
[3]  
Barles G., Chasseigne E., Imbert C., On the Dirichlet problem for second-order elliptic integro-differential equations, Ind. Univ. Math. J., 57, 1, pp. 146-213, (2008)
[4]  
Bjorland C., Caffarelli L., Figalli A., Nonlocal TugofWar and the infinity fractional Laplacian, Commun. Pure Appl. Math., 65, 3, pp. 337-380, (2012)
[5]  
= f and related extremal problems, (1989)
[6]  
Chambolle A., Lindgren E., Monneau R., A Hölder infinity Laplacian, Optim. Calc. Var., 18, 3, pp. 799-835, (2012)
[7]  
Caffarelli L., Salsa S., Silvestre L., Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., 171, 2, pp. 425-461, (2008)
[8]  
Dipierro S., Savin O., Valdinoci E., A nonlocal free boundary problem, SIAM J. Math. Anal., 47, 6, pp. 4559-4605, (2015)
[9]  
Di Nezza E., Palatucci G., Valdinoci E., Hitchhikers guide to the fractional Sobolev spaces, Bull. Sci. Math., 136, 5, pp. 521-573, (2012)
[10]  
Ferreira R., Perez-Llanos M., Limit problems for a fractional p -Laplacian as p → ∞. Nonlinear Differ. Equ. Appl. no 2, Art, 14, (2016)