Branching Random Walks Conditioned on Particle Numbers

被引:0
作者
Tianyi Bai
Pierre Rousselin
机构
[1] Université Sorbonne Paris Nord,Laboratoire de Géométrie, Analyse et Applications
[2] CNRS UMR 7539,undefined
来源
Journal of Statistical Physics | 2021年 / 185卷
关键词
Branching random walk; Galton–Watson tree; Gap statistics; Conditioned on particle numbers;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider a pruned Galton–Watson tree conditioned to have k particles in generation n, i.e. we take a Galton–Watson tree satisfying Zn=k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_n=k$$\end{document}, and delete all branches that die before generation n. We show that with k fixed and n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document}, the first n generations of this tree can be described by an explicit probability measure Pkst\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {P}}^{st}_k$$\end{document}. As an application, we study a branching random walk (Vu)u∈T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(V_u)_{u\in T}$$\end{document} indexed by such a pruned Galton–Watson tree T, and give the asymptotic tail behavior of the span and gap statistics of its k particles in generation n, (Vu)|u|=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(V_u)_{|u|=n}$$\end{document}. This is the discrete version of Ramola et al. (Chaos Solitons Fractals 74:79–88, 2015), generalized to arbitrary offspring and displacement distributions with moment constraints.
引用
收藏
相关论文
共 32 条
[1]  
Abraham R(2020)Very fat geometric Galton-Watson trees ESAIM Probab. Stat. 24 294-314
[2]  
Bouaziz A(2014)Local limits of conditioned Galton-Watson trees: the condensation case Electron. J. Probab. 19 29-1426
[3]  
Delmas JF(2014)Local limits of conditioned Galton-Watson trees: the infinite spine case Electron. J. Probab. 19 19-451
[4]  
Abraham R(2013)Convergence in law of the minimum of a branching random walk Ann. Probab. 41 1362-209
[5]  
Delmas JF(2013)Branching Brownian motion seen from its tip Probab. Theory Relat. Fields 157 405-362
[6]  
Abraham R(1997)Universality classes for extreme-value statistics J. Phys. A 30 7997-241
[7]  
Delmas JF(2017)The harmonic measure of balls in random trees Ann. Probab. 45 147-309
[8]  
Aïdékon E(1974)Ein grenzwertsatz für subkritische verzweigungsprozesse mit endlich vielen typen von teilchen Math. Nachr. 64 357-487
[9]  
Aïdékon E(1971)The structure of reduced critical Galton-Watson processes Math. Nachr. 79 233-656
[10]  
Berestycki J(1999)Elementary new proofs of classical limit theorems for Galton-Watson processes J. Appl. Probab 36 301-88