The Number of Unlabeled Orders on Fourteen Elements

被引:0
作者
Jobst Heitzig
Jürgen Reinhold
机构
[1] Universität Hannover,Institut für Mathematik
[2] Universität Hannover,Institut für Mathematik
来源
Order | 2000年 / 17卷
关键词
enumeration; finite poset; orderly algorithm; parallelization; topology;
D O I
暂无
中图分类号
学科分类号
摘要
Lacking an explicit formula for the numbers T0(n) of all order relations (equivalently: T0 topologies) on n elements, those numbers have been explored only up to n=13 (unlabeled posets) and n=15 (labeled posets), respectively.
引用
收藏
页码:333 / 341
页数:8
相关论文
共 19 条
  • [1] Borevi? Z. I.(1982)On the periodicity of residues of the number of finite labeled Zap. Nau?n. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 114 32-36
  • [2] Chaunier C.(1991)-topologies C.R. Acad. Sci. Paris Sér. I 314 691-694
  • [3] Lyger?s N.(1992)Progrès dans l'énumération des posets Order 9 203-204
  • [4] Chaunier C.(1966)The number of orders with thirteen elements V. R. Acad. Sci. Paris, Ser. A-B 262 1091-1094
  • [5] Lyger?s N.(1991)Recouvrements, bases de filtre et topologies d'un ensemble fini Order 7 361-374
  • [6] Comtet L.(1977)New results from an algorithm for counting posets J. ACM 24 676-692
  • [7] Culberson J. C.(1991)A machine representation of finite Order 8 247-265
  • [8] Rawlins G. J. E.(1967) topologies Comm. ACM 10 295-297
  • [9] Das S. K.(1975)Counting finite posets and topologies Trans. Amer. Math. Soc. 205 205-220
  • [10] Erné M.(1969)On the computer enumeration of finite topologies J. Austral. Math. Soc. 9 252-256