On the rate of points in projective spaces

被引:0
作者
Aldo Conca
Emanuela De Negri
Maria Evelina Rossi
机构
[1] Universitá di Genova,Dipartimento di Matematica
来源
Israel Journal of Mathematics | 2001年 / 124卷
关键词
Projective Space; Hilbert Series; Hilbert Function; Coordinate Ring; Minimal Free Resolution;
D O I
暂无
中图分类号
学科分类号
摘要
The rate of a standard gradedK-algebraR is a measure of the growth of the shifts in a minimal free resolution ofK as anR-module. It is known that rate(R)=1 if and only ifR is Koszul and that rate(R) ≥m(I)−1 wherem(I) denotes the highest degree of a generator of the defining idealI ofR. We show that the rate of the coordinate ring of certain sets of pointsX of the projective space Pn is equal tom(I)−1. This extends a theorem of Kempf. We study also the rate of algebras defined by a space of forms of some fixed degreed and of small codimension.
引用
收藏
页码:253 / 265
页数:12
相关论文
共 16 条
[1]  
Anick D.(1986)On the homology of associative algebras Transaction of the American Mathematical Society 296 641-659
[2]  
Aramova A.(1995)On the rate of relative Veronese submodules Revue Roumaine de Mathématiques Pures et Appliquées 40 243-251
[3]  
Barcanescu S.(1993)On the resolution of certain graded algebras Transactions of the American Mathematical Society 337 389-409
[4]  
Herzog J.(2000)Gröbner bases for spaces of quadrics of low codimension Advances in Applied Mathematics 24 111-124
[5]  
Cavaliere M. P.(1994)Initial ideals, Veronese subrings, and rates of algebras Advances in Mathematics 109 168-187
[6]  
Rossi M. E.(2000)Rationality for generic toric rings Mathematische Zeitschrift 233 93-102
[7]  
Valla G.(1992)Syzygies for points in projective space Journal of Algebra 145 219-223
[8]  
Conca A.(1993)The Minimal Resolution Conjecture Journal of Algebra 156 5-35
[9]  
Eisenbud D.(undefined)undefined undefined undefined undefined-undefined
[10]  
Reeves A.(undefined)undefined undefined undefined undefined-undefined