Second-order general perturbed sweeping process differential inclusion

被引:0
作者
Jimmy Noel
机构
[1] Université Montpellier 2,Institut Montpelliérain Alexander Grothendieck
来源
Journal of Fixed Point Theory and Applications | 2018年 / 20卷
关键词
Sweeping process; prox-regular sets; subsmooth sets; normal cone; subdifferential; 34A60; 49J52;
D O I
暂无
中图分类号
学科分类号
摘要
The paper presents a study of perturbed sweeping process where the moving set depends on both the time and the state. This evolution problem is governed by second-order differential inclusions with an unbounded perturbation. Assuming that such set is prox-regular or subsmooth, we prove the existence of solutions even in the presence of a delay.
引用
收藏
相关论文
共 62 条
  • [21] Castaing C(2017)-far sets and existence results for generalized perturbed sweeping processes J. Fixed Point Theory Appl. 19 2895-2908
  • [22] DucHa TX(1996)Non-convex second-order Moreau’s sweeping processes in Hilbert spaces Trans. Am. Math. Soc. 4 1235-1279
  • [23] Valadier M(1971)Nonsmooth sequential analysis in Asplund spaces Sém. Anal. Convexe Montp. Exp. 15 43-203
  • [24] Castaing C(1972)Rafle par un convexe variable I Sém. Anal. Convexe Montp. Exp. 3 36-374
  • [25] Ibrahim AG(1974)Rafle par un convexe variable II Ann. Scuola Norm. Sup. Pisa 1 169-612
  • [26] Yarou M(1977)Multi-applications à rétraction finie J. Differ. Equ. 26 347-5249
  • [27] Castaing C(2014)Evolution problem associated with a moving convex set in a Hilbert space Vietnam J. Math. 42 595-26
  • [28] Monteiro Marques MDP(2000)Nonconvex sweeping process with a moving set depending on the state Trans. Am. Math. Soc. 352 5231-76
  • [29] Chemetov N(2003)Local differentiability of distance functions J. Differ. Equ. 193 1-1673
  • [30] Monteiro Marques MDP(2008)Sweeping process with regular and nonregular sets SIAM J. Optim. 19 62-undefined