Second-order general perturbed sweeping process differential inclusion

被引:0
作者
Jimmy Noel
机构
[1] Université Montpellier 2,Institut Montpelliérain Alexander Grothendieck
来源
Journal of Fixed Point Theory and Applications | 2018年 / 20卷
关键词
Sweeping process; prox-regular sets; subsmooth sets; normal cone; subdifferential; 34A60; 49J52;
D O I
暂无
中图分类号
学科分类号
摘要
The paper presents a study of perturbed sweeping process where the moving set depends on both the time and the state. This evolution problem is governed by second-order differential inclusions with an unbounded perturbation. Assuming that such set is prox-regular or subsmooth, we prove the existence of solutions even in the presence of a delay.
引用
收藏
相关论文
共 62 条
  • [1] Adly S(2016)Unbounded second-order state-dependent Moreau’s sweeping processes in Hilbert spaces J. Optim. Theory Appl. 169 407-423
  • [2] Le BK(2017)Discontinuous sweeping process with prox-regular sets ESAIM Control Optim. Calc. Var. 23 1293-1329
  • [3] Adly S(2017)Second order sweeping process with a Lipschitz perturbation J. Math. Anal. Appl. 452 729-746
  • [4] Nacry F(2005)Subsmooth sets: function characterizations and related concepts Trans. Am. Math. Soc. 357 1275-1301
  • [5] Thibault L(2004)Existence results on the second-order sweeping processes with perturbations Set Valued Anal. 12 291-318
  • [6] Aliouane F(2001)Existence of solutions for second-order perturbed nonconvex sweeping process Comput. Math. Appl. 62 1736-1744
  • [7] Azzam-Laouir D(2004)Existence results for first and second order nonconvex sweeping process with delay Port. Math. 61 207-230
  • [8] Aussel D(2002)On various notions of regularity of sets in nonsmooth analysis Nonlinear Anal. 48 223-246
  • [9] Daniilidis A(2005)Nonconvex sweeping process and prox-regularity in Hilbert space J. Nonlinear Convex Anal. 6 359-374
  • [10] Thibault L(1993)Evolution equations governed by the sweeping process Set Valued Anal. 1 109-139