Multiple periodic orbits of high-dimensional differential delay systems

被引:0
|
作者
Zhongmin Sun
Weigao Ge
Lin Li
机构
[1] Weifang Engineering Vocational College,School of Electromechanical Engineering
[2] Beijing Institute of Technology,School of Mathematics and Statistics
来源
Advances in Difference Equations | / 2019卷
关键词
Differential delay system; Periodic orbits; Critical point theory; Variational method; 34K13; 58E50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider differential delay systems of the form x′(t)=−∑s=12k−1(−1)s+1∇F(x(t−s)),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x'(t)=-\sum_{s=1}^{2k-1}(-1)^{s+1} \nabla F \bigl(x(t-s) \bigr), $$\end{document} in which the coefficients of the nonlinear terms with different hysteresis have different signs. Such systems have not been studied before. The multiplicity of the periodic orbits is related to the eigenvalues of the limit matrix. The results provide a theoretical basis for the study of differential delay systems.
引用
收藏
相关论文
共 50 条
  • [41] Periodic orbits of continuous and discontinuous piecewise linear differential systems via first integrals
    Llibre, Jaume
    Teixeira, Marco Antonio
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2018, 12 (01): : 121 - 135
  • [42] Resonant periodic orbits in the exoplanetary systems
    Antoniadou, K. I.
    Voyatzis, G.
    ASTROPHYSICS AND SPACE SCIENCE, 2014, 349 (02) : 657 - 676
  • [43] Periodic orbits to Kaplan-Yorke like differential delay equations with two lags of ratio (2k-1)/2
    Li, Lin
    Xue, Chunyan
    Ge, Weigao
    ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [44] Resonant periodic orbits in the exoplanetary systems
    K. I. Antoniadou
    G. Voyatzis
    Astrophysics and Space Science, 2014, 349 : 657 - 676
  • [45] HIGH-DIMENSIONAL CHAOS IN DISSIPATIVE AND DRIVEN DYNAMICAL SYSTEMS
    Musielak, Z. E.
    Musielak, D. E.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (09): : 2823 - 2869
  • [46] Periodic orbits and escapes in dynamical systems
    Contopoulos, George
    Harsoula, Mirella
    Lukes-Gerakopoulos, Georgios
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2012, 113 (03) : 255 - 278
  • [47] On periodic orbits of polynomial relay systems
    Jacquemard, Alain
    Pereira, Weber Flavio
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2007, 17 (02) : 331 - 347
  • [48] On the C1 non-integrability of differential systems via periodic orbits
    Llibre, Jaume
    Valls, Claudia
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2011, 22 : 381 - 391
  • [49] The existence and stability analyses of periodic orbits in 3-dimensional piecewise affine systems
    Wang, Lei
    Yang, Xiao-Song
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2018, 27 : 157 - 173
  • [50] Periodic orbits for 2n-dimensional control piecewise smooth dynamical systems
    Cao, Chen
    Fu, Chen
    Tang, Yilei
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (04)