Multiple periodic orbits of high-dimensional differential delay systems

被引:0
|
作者
Zhongmin Sun
Weigao Ge
Lin Li
机构
[1] Weifang Engineering Vocational College,School of Electromechanical Engineering
[2] Beijing Institute of Technology,School of Mathematics and Statistics
来源
Advances in Difference Equations | / 2019卷
关键词
Differential delay system; Periodic orbits; Critical point theory; Variational method; 34K13; 58E50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider differential delay systems of the form x′(t)=−∑s=12k−1(−1)s+1∇F(x(t−s)),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x'(t)=-\sum_{s=1}^{2k-1}(-1)^{s+1} \nabla F \bigl(x(t-s) \bigr), $$\end{document} in which the coefficients of the nonlinear terms with different hysteresis have different signs. Such systems have not been studied before. The multiplicity of the periodic orbits is related to the eigenvalues of the limit matrix. The results provide a theoretical basis for the study of differential delay systems.
引用
收藏
相关论文
共 50 条