Parameters Development for Optimum Deposition Rate in Laser DMD of Stainless Steel EN X3CrNiMo13-4

被引:19
作者
Dalaee M. [1 ,2 ]
Cerrutti E. [1 ]
Dey I. [1 ,2 ]
Leinenbach C. [3 ]
Wegener K. [1 ]
机构
[1] Institute of Machine Tools & Manufacturing (IWF), ETH Zürich, Zürich
[2] inspire AG, Zürich
[3] Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf
关键词
Additive manufacturing; Laser cladding; Laser direct metal deposition; Parameters optimization;
D O I
10.1007/s40516-021-00161-3
中图分类号
学科分类号
摘要
Laser Direct Metal Deposition (DMD) has been developed as a manufacturing process to deposit coatings on existing materials and proves advantageous in Additive Manufacturing (AM) of complex and precise components. However, it is necessary to carefully determine the proper process parameter combinations to make this method economically viable for industries. The intent of this study is to address enhancement in productivity of laser DMD of stainless steel EN X3CrNiMo13-4. Accordingly, the effects of the main laser process parameters of laser power P, scan speed v, powder flow rate m ˙ , and spot diameter s on track geometries and build-up rate are discussed. The regression analysis is conducted to derive correlations between the combined set of main parameters and deposition rate. The results show a good linear regression correlation of R2 >0.9 for the geometrical characteristic of aspect ratio, dilution, and deposition rate. The constructed processing map, using linear regression equations, presents proper process parameters selection in connection with deposition rate, aspect ratio, and dilution rate. © 2021, The Author(s).
引用
收藏
页码:1 / 17
页数:16
相关论文
共 25 条
[1]  
Soffel F., Eisenbarth D., Wegener K., Effect of clad height, substrate thickness and scanning pattern on cantilever distortion in direct metal deposition, Int J Adv Manuf Technol, 117, pp. 2083-2091, (2021)
[2]  
Rashkovets M., Mazzarisi M., Nikulina A., Casalino G., Analysis of laser direct stainless steel powder deposition on Ti6Al4V substrate, Mater. Lett., 274, (2020)
[3]  
Cavaliere P., Silvello A., Perrone A., Additive Manufacturing by Laser Cladding: State of the Art, Laser Cladding of Metals, (2021)
[4]  
Yan L., Chen Y., Liou F., Additive manufacturing of functionally graded metallic materials using laser metal deposition, Addit. Manuf., 31, (2020)
[5]  
Bhardwaj T., Shukla M., Laser additive manufacturing- Direct energy deposition of Ti-15Mo biomedical alloy: artificial neural network based modeling of track dilution, Lasers Manuf. Mater. Process., 7, 3, pp. 245-258, (2020)
[6]  
Singh A., Kapil S., Das M., A comprehensive review of the methods and mechanisms for powder feedstock handling in directed energy deposition, Addit. Manuf., 35, (2020)
[7]  
Dalaee M.T., Gloor L., Leinenbach C., Wegener K., Experimental and numerical study of the influence of induction heating process on build rates Induction Heating-assisted laser Direct Metal Deposition (IH-DMD), Surf. Coat. Technol., 384, (2020)
[8]  
Dalaee M., Cheaitani F., Arabi-Hashemi A., Rohrer C., Weisse B., Leinenbach C., Wegener K., Feasibility study in combined direct metal deposition (DMD) and plasma transfer arc welding (PTA) additive manufacturing, Int. J. Adv. Manuf. Technol., 106, 9, pp. 4375-4389, (2020)
[9]  
Liu Y., Ding Y., Yang L., Sun R., Zhang T., Yang X., Research and progress of laser cladding on engineering alloys: A review, J. Manuf. Process., 66, pp. 341-363, (2021)
[10]  
Errico V., Campanelli S.L., Angelastro A., Mazzarisi M., Casalino G., On the feasibility of AISI 304 stainless steel laser welding with metal powder, J. Manuf. Process., 56, pp. 96-105, (2020)