Control Theory, Integral Matrices, and Orthogonal Polynomials

被引:0
作者
A. I. Ovseevich
机构
[1] Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences,
来源
Proceedings of the Steklov Institute of Mathematics | 2021年 / 315卷
关键词
control of linear systems; feedback control; Hilbert matrix; orthogonal polynomials;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:161 / 170
页数:9
相关论文
共 21 条
  • [1] Al-Salam W. A.(1958)Congruence properties of the classical orthogonal polynomials Duke Math. J. 25 1-9
  • [2] Carlitz L.(2010)Bounded feedback controls for linear dynamic systems by using common Lyapunov functions Dokl. Math. 82 831-834
  • [3] Anan’evskii I. M.(1970)A classification of linear controllable systems Kibernetika 6 173-188
  • [4] Anokhin N. V.(1992)Legendre polynomials and the elliptic genus J. Algebra 145 83-93
  • [5] Ovseevich A. I.(1953)Congruence properties of the polynomials of Hermite, Laguerre and Legendre Math. Z. 59 474-483
  • [6] Brunovský P.(1983)Tricks or treats with the Hilbert matrix Am. Math. Mon. 90 301-312
  • [7] Brylinski J.-L.(2004)The controllability function as the time of motion. I Mat. Fiz. Anal. Geom. 11 208-225
  • [8] Carlitz L.(2004)The controllability function as the time of motion. II Mat. Fiz. Anal. Geom. 11 341-354
  • [9] Choi M.-D.(2016)Asymptotic control theory for a system of linear oscillators Moscow Math. J. 16 561-598
  • [10] Rivero A. E. Choque(1894)Ein Beitrag zur Theorie des Legendre’schen Polynoms Acta Math. 18 155-159