Multifractal spectra and multifractal zeta-functions

被引:1
作者
V. Mijović
L. Olsen
机构
[1] University of St. Andrews,Department of Mathematics
来源
Aequationes mathematicae | 2017年 / 91卷
关键词
Multifractals; Zeta functions; Large deviations; Ergodic theory; Hausdorff dimension; Primary 28A78; Secondary 37D30; 37A45;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce multifractal zetafunctions providing precise information of a very general class of multifractal spectra, including, for example, the multifractal spectra of self-conformal measures and the multifractal spectra of ergodic Birkhoff averages of continuous functions. More precisely, we prove that these and more general multifractal spectra equal the abscissae of convergence of the associated zeta-functions.
引用
收藏
页码:21 / 82
页数:61
相关论文
共 62 条
  • [1] Arbeiter M(1996)Random self-similar multifractals Math. Nachr. 181 5-42
  • [2] Patzschke N(2008)Multifractal analysis of Birkhoff averages on “self-affine” symbolic spaces Nonlinearity 21 2409-2425
  • [3] Barral J(2001)Variational principles and mixed multifractal spectra Trans. Am. Math. Soc. 353 3919-3944
  • [4] Mensi M(2000)Sets of “non-typical” points have full topological entropy and full Hausdorff dimension Isr. J. Math. 116 29-70
  • [5] Barreira L(1992)Multifractal decomposition of Moran fractals Adv. Math. 92 196-236
  • [6] Saussol B(2000)On the distribution of long-term time averages on symbolic space J. Stat. Phys. 99 813-856
  • [7] Barreira L(2001)Recurrence, dimension and entropy J. Lond. Math. Soc. 64 229-244
  • [8] Schmeling J(2002)Ergodic limits on the conformal repellers Adv. Math. 169 58-91
  • [9] Cawley R(2000)Lacunarity of self-similar and stochastically self-similar sets Trans. Am. Math. Soc. 352 1953-1983
  • [10] Mauldin RD(1986)Fractal measures and their singularities: the characterization of strange sets Phys. Rev. A 33 1141-1151