Conformal symmetry in non-local field theories

被引:0
作者
M. A. Rajabpour
机构
[1] SISSA and INFN,
[2] Sezione di Trieste,undefined
来源
Journal of High Energy Physics | / 2011卷
关键词
Conformal and W Symmetry; Global Symmetries;
D O I
暂无
中图分类号
学科分类号
摘要
We have shown that a particular class of non-local free field theory has conformal symmetry in arbitrary dimensions. Using the local field theory counterpart of this class, we have found the Noether currents and Ward identities of the translation, rotation and scale symmetries. The operator product expansion of the energy-momentum tensor with quasi-primary fields is also investigated.
引用
收藏
相关论文
共 33 条
  • [1] Fisher ME(1972)Critical exponents for long-range interactions Phys. Rev. Lett. 29 917-undefined
  • [2] Ma S-k(1995)Geometrical exponents of contour loops on random gaussian surfaces Phys. Rev. Lett. 74 4580-undefined
  • [3] Nickel BG(2009)Scaling relations for contour lines of rough surfaces Phys. Rev. E 80 011115-undefined
  • [4] Kondev J(1998)Random walk models for space-fractional diffusion processes Fract. Calc. Appl. Anal. 1 167-undefined
  • [5] Henley CL(2011)Tutorial on scale and conformal symmetries in diverse dimensions J. Phys. A 44 223001-undefined
  • [6] Rajabpour MA(2009)Universal constraints on conformal operator dimensions Phys. Rev. D 80 045006-undefined
  • [7] Vaez Allaei SM(2009)Holography from conformal field theory JHEP 10 079-undefined
  • [8] Gorenflo R(2009)Ageing in bosonic particle-reaction models with long-range transport J. Phys. A: Math. Theor. 42 395004-undefined
  • [9] Mainardi F(2007)An extension problem related to the fractional Laplacian Commun. Part. Diff. Eq. 32 1245-undefined
  • [10] Jackiw R(2011)Fractional Laplacian in conformal geometry Adv. Math. 226 1410-undefined