An analog of the Titchmarsh’s theorem for the first Hankel-Clifford transform

被引:0
|
作者
M. El Hamma
R. Daher
A. Mahfoud
机构
[1] Université Hassan II,Département de mathématiques et informatique, Faculté des Sciences Aïn Chock, Laboratoire Topologie, Algèbre, Géométrie et Mathématiques Discrètes
来源
The Journal of Analysis | 2021年 / 29卷
关键词
Translation operator; First Hankel-Clifford transform; Clifford Lipschitz class; 46F12;
D O I
暂无
中图分类号
学科分类号
摘要
Using a translation operator, we obtain an analog of Titchmarsh’s theorem for the first Hankel-Clifford transform for functions satisfying the Clifford Lipschitz condition in the space L2((0,+∞),xμ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {L}^{2}((0,+\infty ), x^{\mu })$$\end{document}, where μ≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu \ge 0$$\end{document}. .
引用
收藏
页码:1129 / 1136
页数:7
相关论文
共 50 条