Number of Degrees of Freedom in the Paley-Wiener Space

被引:0
|
作者
Tatiana Levitina
机构
[1] Institut Computational Mathematics,
[2] Technische Universit ät Braunschweig,undefined
来源
Sampling Theory in Signal and Image Processing | 2015年 / 14卷 / 1期
关键词
Sampling theorem; finite Fourier transform; band– limited functions;
D O I
10.1007/BF03549587
中图分类号
学科分类号
摘要
The concept of the number of degrees of freedom of band-limited signals is discussed in the context of the concentration property of the finite Fourier transform eigenfunctions, or prolates. We show that the classes of band-limited signals obtained as a result of successive application of the truncated direct and truncated inverse Fourier transforms possess a finite number of degrees of freedom.
引用
收藏
页码:49 / 69
页数:20
相关论文
共 9 条
  • [1] System Representations for the Paley-Wiener Space
    Boche, Holger
    Moenich, Ullrich J.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2018, 24 (01) : 285 - 308
  • [2] Gabor Phase Retrieval in the Generalized Paley-wiener Space
    Zhang, Qingyue
    Wu, Liping
    Guo, Zhenli
    Liu, Bei
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2024, 43 (01) : 470 - 494
  • [3] Paley-Wiener subspace of vectors in a Hilbert space with applications to integral transforms
    Pesenson, Isaac
    Zayed, Ahmed I.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 353 (02) : 566 - 582
  • [4] A PALEY-WIENER THEOREM FOR THE ASKEY-WILSON FUNCTION TRANSFORM
    Abreu, Luis Daniel
    Bouzeffour, Fethi
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (08) : 2853 - 2862
  • [5] On discrete and continuous norms in Paley-Wiener spaces and consequences for exponential frames
    Voss, JJ
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1999, 5 (2-3) : 193 - 201
  • [6] On discrete and continuous norms in Paley-Wiener spaces and consequences for exponential frames
    Jürgen J. Voss
    Journal of Fourier Analysis and Applications, 1999, 5 : 193 - 201
  • [7] Global and Local Approximation Behavior of Reconstruction Processes for Paley-Wiener Functions
    Holger Boche
    Ullrich J. Mönich
    Sampling Theory in Signal and Image Processing, 2009, 8 (1): : 23 - 51
  • [8] Gabor Phase Retrieval in the Generalized Paley–wiener Space
    Qingyue Zhang
    Liping Wu
    Zhenli Guo
    Bei Liu
    Circuits, Systems, and Signal Processing, 2024, 43 : 470 - 494
  • [9] The sampling theorem, Poisson's summation formula, general Parseval formula, reproducing kernel formula and the Paley-Wiener theorem for bandlimited signals - their interconnections
    Butzer, P. L.
    Ferreira, P. J. S. G.
    Higgins, J. R.
    Schmeisser, G.
    Stens, R. L.
    APPLICABLE ANALYSIS, 2011, 90 (3-4) : 431 - 461