Nonlinear parabolic inequalities in Lebesgue-Sobolev spaces with variable exponent

被引:8
作者
Bennouna J. [1 ]
El hamdaoui B. [1 ]
Mekkour M. [2 ]
Redwane H. [3 ]
机构
[1] Département de Mathématiques, Laboratoire LAMA, Faculté des Sciences Dhar-Mahrez, Université Sidi Mohammed Ben Abdellah, B.P 1796, Atlas Fès
[2] Laboratoire d’Informatique, Automatique et Optoélectronique, Faculté Polydisciplinaire de Mathmatiques, Université Sidi Mohamed Ben Abdellah, Taza
[3] Faculté des Sciences Juridiques, Economiques et Sociales, Université Hassan 1, Settat
关键词
Entropy solutions; Parabolic problem; Penalized equations; Sobolev space; Variable exponent;
D O I
10.1007/s11587-016-0255-2
中图分类号
学科分类号
摘要
We give an existence result of the obstacle parabolic problem: $begin{aligned} left{ begin{array}{ll} uge psi &{} text{ a.e. } text{ in } Omega times (0,T)\ displaystyle frac{partial b(x,u)}{partial t} -div(a(x,t,u,nabla u))+div(phi (x,t,u)) =f &{} text{ in } Omega times (0,T).\ end{array} right. end{aligned}${u≥ψa.e.inΩ×(0,T)∂b(x,u)∂t-div(a(x,t,u,∇u))+div(ϕ(x,t,u))=finΩ×(0,T).The main contribution of our work is to prove the existence of an entropy solution without the coercivity condition on ϕ. The second term f belongs to L1(Ω × (0 , T)) and b(. , u0) ∈ L1(Ω). The proof is based on the penalization methods. © 2016, Università degli Studi di Napoli Federico II"."
引用
收藏
页码:93 / 125
页数:32
相关论文
共 19 条
[1]  
Aharouch L., Bennouna J., Existence and uniqueness of solutions of unilateral problems in Orlicz spaces, Nonlinear Anal, 72, pp. 3553-3565, (2010)
[2]  
Akdim Y., Bennouna J., Mekkour M., Solvability of degenerate parabolic equations without sign condition and three unbounded nonlinearities, Electr. J. Differ. Equ., 3, pp. 1-25, (2011)
[3]  
Almeida A., Hasto P., Besov spaces with variable smoothness and integrability, J. Funct. Anal., 258, 5, pp. 162-165, (2010)
[4]  
Bendahmane M., Wittbold P., Zimmermann A., Renormalized solutions for a nonlinear parabolic equation with variable exponents and L<sup>1</sup> -data, J. Differ. Equ., 249, pp. 483-515, (2010)
[5]  
Benkirane A., Youssfi A., Regularity for solutions of nonlinear elliptic equations with degenerate coercivity, Ricerche di Matematica., 56, pp. 241-275, (2007)
[6]  
Benilan P., Boccardo L., Gallouet T., Gariepy R., Pierre M., Vazquez J.L., An L<sup>1</sup> theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci (4), 22, pp. 241-273, (1995)
[7]  
Blanchard D., Murat F., Redwane H., Existence and uniqueness of renormalized solution for fairly general class of nonlinear parabolic problems, J. Differe. Equ., 177, pp. 331-374, (2001)
[8]  
Blanchard D., Redwane H., Renormalized solutions for class of nonlinear evolution problems, J. Math. Pure., 77, pp. 117-151, (1998)
[9]  
Boccardo L., Giachetti D., Diaz J.-I., Murat F., Existence and regularity of renormalized solutions of some elliptic problems involving derivatives of nonlinear terms, J. Differ. Equ., 106, pp. 215-237, (1993)
[10]  
Del Vecchio T., Posteraro M.R., An existence result for nonlinear and noncoercive problems, Nonlinear Anal., 31, 1-2, pp. 191-206, (1998)