The 3-Isometric Lifting Theorem

被引:0
作者
Scott McCullough
Benjamin Russo
机构
[1] University of Florida,Department of Mathematics
来源
Integral Equations and Operator Theory | 2016年 / 84卷
关键词
47A20 (Primary); 47A45; 47B99; 34B24 (Secondary); Dilation theory; 3-symmetric operators; 3-isometric operators; non-normal spectral theory; complete positivity; Wiener–Hopf factorization;
D O I
暂无
中图分类号
学科分类号
摘要
An operator T on Hilbert space is a 3-isometry if T∗nTn=I+nB1+n2B2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T^{*n}T^{n}= I +n B_1 +n^{2} B_2}$$\end{document} is quadratic in n. An operator J is a Jordan operator if J = U + N where U is unitary, N2 = 0 and U and N commute. If T is a 3-isometry and c>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${c > 0,}$$\end{document} then I-c-2B2+sB1+s2B2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${I-c^{-2} B_{2} + sB_{1} + s^{2}B_2}$$\end{document} is positive semidefinite for all real s if and only if it is the restriction of a Jordan operator J = U + N with the norm of N at most c. As a corollary, an analogous result for 3-symmetric operators, due to Helton and Agler, is recovered.
引用
收藏
页码:69 / 87
页数:18
相关论文
共 23 条
[11]  
Martinn A.(1989)Sub-Brownian operators J. Oper. Theory 22 291-305
[12]  
Negrn E.(2005)Composition operators that are m-isometries Houston J. Math. 31 255-266
[13]  
Gleason J.(1991)A representation theorem for cyclic analytic two-isometries Trans. Am. Math. Soc. 328 325-349
[14]  
Richter S.(2013)m-isometries, n-symmetries and other linear transformations which are hereditary roots Integral Equ. Oper. Theory 75 301-321
[15]  
Gu C.(undefined)undefined undefined undefined undefined-undefined
[16]  
Stankus M.(undefined)undefined undefined undefined undefined-undefined
[17]  
Helton J.W.(undefined)undefined undefined undefined undefined-undefined
[18]  
Helton J.W.(undefined)undefined undefined undefined undefined-undefined
[19]  
McCullough S.(undefined)undefined undefined undefined undefined-undefined
[20]  
Patton L.J.(undefined)undefined undefined undefined undefined-undefined