The 3-Isometric Lifting Theorem

被引:0
作者
Scott McCullough
Benjamin Russo
机构
[1] University of Florida,Department of Mathematics
来源
Integral Equations and Operator Theory | 2016年 / 84卷
关键词
47A20 (Primary); 47A45; 47B99; 34B24 (Secondary); Dilation theory; 3-symmetric operators; 3-isometric operators; non-normal spectral theory; complete positivity; Wiener–Hopf factorization;
D O I
暂无
中图分类号
学科分类号
摘要
An operator T on Hilbert space is a 3-isometry if T∗nTn=I+nB1+n2B2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T^{*n}T^{n}= I +n B_1 +n^{2} B_2}$$\end{document} is quadratic in n. An operator J is a Jordan operator if J = U + N where U is unitary, N2 = 0 and U and N commute. If T is a 3-isometry and c>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${c > 0,}$$\end{document} then I-c-2B2+sB1+s2B2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${I-c^{-2} B_{2} + sB_{1} + s^{2}B_2}$$\end{document} is positive semidefinite for all real s if and only if it is the restriction of a Jordan operator J = U + N with the norm of N at most c. As a corollary, an analogous result for 3-symmetric operators, due to Helton and Agler, is recovered.
引用
收藏
页码:69 / 87
页数:18
相关论文
共 23 条
  • [1] Agler J.(1982)The Arveson extension theorem and coanalytic models Integral Equ. Oper. Theory 5 608-631
  • [2] Agler J.(1995)-isometric transformations of Hilbert space II Integral Equ. Oper. Theory 23 1-48
  • [3] Stankus M.(1995)-isometric transformations of Hilbert space I Integral Equ. Oper. Theory 21 383-429
  • [4] Agler J.(1996)-isometric transformations of Hilbert space III Integral Equ. Oper. Theory 24 379-421
  • [5] Stankus M.(1980)Nonnormal dilations, disconjugacy and constrained spectral factorization Integral Equ. Oper. Theory 3 216-309
  • [6] Agler J.(2010)Weighted shift operators which are m-isometries Integral Equ. Oper. Theory 68 301-312
  • [7] Stankus M.(2006)m-isometric commuting tuples of operators on a Hilbert space Integral Equ. Oper. Theory 56 181-196
  • [8] Ball J.A.(2015)Some results on higher order isometries and symmetries: Products and sums with a nilpotent operator Linear Algebra Appl. 469 500-509
  • [9] Helton J.W.(1971)Jordan operators in infinite dimensions and Sturm–Liouville conjugate point theory Bull. Am. Math. Soc. 78 57-61
  • [10] Bermdez T.(1972)Infinite dimensional Jordan operators and Sturm–Liouville conjugate point theory Trans. Am. Math. Soc. 170 305-331