On the Generalisation of Pade′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Pade}^{'}$$\end{document} Approximation Approach for the Construction of p-Stable Hybrid Linear Multistep Methods

被引:0
作者
I. C. Felix
R. I. Okuonghae
机构
[1] Lagos City Polytechnic,School of Engineering and Applied Sciences
[2] University of Benin,Department of Mathematics
关键词
p-Stability; Hybrid; Order; Interval of periodicity; approximation; Principal local truncation error (PLTE);
D O I
10.1007/s40819-019-0685-0
中图分类号
学科分类号
摘要
p-Stable hybrid linear multistep methods (HLMMs) have been a fascinating area of interest for the numerical solution of second order initial value problems in ordinary differential equations, because of their high order of accuracy. This paper presents new class of p-stable HLMMs with order p=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2$$\end{document} and p=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=4$$\end{document} respectively for the numerical solution of second order systems. The hybrid schemes which are obtained via pade′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {pad}e^{'}$$\end{document} approximation approach have substantial interval of periodicity (0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0, \infty )$$\end{document} with principal local truncation error. We give a theorem with proof, stating the limitation of the approach in search for higher order p-stable formulas. We carry out several numerical experiments to validate the accuracy and superiority of our schemes over some existing methods in the literature.
引用
收藏
相关论文
共 89 条
[21]  
Bildik N(2008)Homotopy analysis method for quadratic Riccati differential equation Commun. Nonlinear Sci. Numer. Simul. 13 539-867
[22]  
Deniz S(2010)The solution of multipoint boundary value problems by the optimal homotopy asymptotic method Comput. Math. Appl. 59 2000-449
[23]  
Deniz S(2008)Application of optimal homotopy asymptotic method for solving nonlinear equations arising in heat transfer Int. Commun. Heat Mass Transf. 35 710-315
[24]  
Bildik N(2013)Application of optimal homotopy asymptotic method for the approximate solution of Riccati equation Sains Malaysiana 42 863-281
[25]  
Sezer M(2010)Numerical solution of Kawahara’s equation by combining homotpy perturbation and variational iteration methods J. Math. Sci. Adv. Appl. 4 439-337
[26]  
Bildik N(1972)Klassische Runge–Kutta–Nystrom Formeln mit Schrittweiten–Kontrolle fur Differentialgleichungen Computing 10 305-368
[27]  
Deniz S(1984)A Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value problems J. Comput. Appl. Math. 11 277-236
[28]  
Deniz S(1986)A Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value problems. II: Explicit method J. Comput. Appl. Math. 15 329-165
[29]  
Bildik N(1987)An explicit sixth-order method with phase-lag of order eight for J. Comput. Appl. Math. 17 365-927
[30]  
Deniz S(1986)Two-step fourth-order P-stable methods with phase-lag of order six for J. Comput. Appl. Math. 16 233-1695