On the Generalisation of Pade′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Pade}^{'}$$\end{document} Approximation Approach for the Construction of p-Stable Hybrid Linear Multistep Methods

被引:0
作者
I. C. Felix
R. I. Okuonghae
机构
[1] Lagos City Polytechnic,School of Engineering and Applied Sciences
[2] University of Benin,Department of Mathematics
关键词
p-Stability; Hybrid; Order; Interval of periodicity; approximation; Principal local truncation error (PLTE);
D O I
10.1007/s40819-019-0685-0
中图分类号
学科分类号
摘要
p-Stable hybrid linear multistep methods (HLMMs) have been a fascinating area of interest for the numerical solution of second order initial value problems in ordinary differential equations, because of their high order of accuracy. This paper presents new class of p-stable HLMMs with order p=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2$$\end{document} and p=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=4$$\end{document} respectively for the numerical solution of second order systems. The hybrid schemes which are obtained via pade′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {pad}e^{'}$$\end{document} approximation approach have substantial interval of periodicity (0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0, \infty )$$\end{document} with principal local truncation error. We give a theorem with proof, stating the limitation of the approach in search for higher order p-stable formulas. We carry out several numerical experiments to validate the accuracy and superiority of our schemes over some existing methods in the literature.
引用
收藏
相关论文
共 89 条
[1]  
Dahlquist G(1978)On accuracy and unconditional stability of the linear methods for second order differential equations BIT 18 133-136
[2]  
Hairer E(1979)Unconditionally stable methods for second order differential equations Numer. Math. 32 373-379
[3]  
Lambert JD(1976)Symmetric multistep methods for periodic initial value problems J. Inst. Math. Appl. 18 189-202
[4]  
Watson I(1981)High order p-stable formulae for the numerical integration of periodic initial value problems J. Numer. Math. 37 355-370
[5]  
Cash JR(1985)One-leg hybrid formula for second order IVPs Comput. Math. Appl. 10 329-333
[6]  
Fatunla SO(1997)A class of p-stable linear multistep numerical methods Int. J. Comput. Math. 72 1-13
[7]  
Fatunla SO(2005)p-Stable symmetric super-implicit methods for periodic initial value problems Comput. Math. Appl. 50 701-705
[8]  
Ikhile MNO(2018)On the construction of p-stable hybrid multi-step methods for second order ODEs Far East J. Appl. Math. 99 259-273
[9]  
Otunta FO(2018)Higher order super-implicit hybrid multistep methods for second order differential equations Int. J. Mech. Eng. Technol. 9 1384-1392
[10]  
Neta B(2019)A new symmetric p-stable obrechkoff method with optimal phase-lag for oscillatory problems Earthline J. Math. Sci. 1 105-118