Some remarks on Hadamard matrices

被引:0
作者
Jennifer Seberry
Marilena Mitrouli
机构
[1] University of Wollongong,CCISR, SCSSE
[2] University of Athens,Department of Mathematics
来源
Cryptography and Communications | 2010年 / 2卷
关键词
Hadamard matrices; Smith normal form; Embedding matrices; Completely pivoted; Determinant; Gaussian elimination; 05B20; 15A15; 65F40; 62K05;
D O I
暂无
中图分类号
学科分类号
摘要
In this note we use combinatorial methods to show that the unique, up to equivalence, 5 ×5 (1, − 1)-matrix with determinant 48, the unique, up to equivalence, 6 ×6 (1, − 1)-matrix with determinant 160, and the unique, up to equivalence, 7 ×7 (1, − 1)-matrix with determinant 576, all cannot be embedded in the Hadamard matrix of order 8. We also review some properties of Sylvester Hadamard matrices, their Smith Normal Forms, and pivot patterns of Hadamard matrices when Gaussian Elimination with complete pivoting is applied on them. The pivot values which appear reconfirm the above non-embedding results.
引用
收藏
页码:293 / 306
页数:13
相关论文
共 23 条
  • [1] Bouyukliev I(2009)2-(31,15,7), 2-(35,17,8) and 2-(36,15,6) designs with automorphisms of odd prime order, and their related Hadamard matrices and codes Designs Codes Cryptogr. 51 105-345
  • [2] Fack V(1968)Pivot size in Gaussian elimination Numer. Math. 12 335-513
  • [3] Winne J(1988)Growth in Gaussian elimination Amer. Math. Monthly 95 489-187
  • [4] Cryer CW(1995)On the complete pivoting conjecture for a Hadamard matrix of order 12 Linear Multilinear Algebra 38 181-361
  • [5] Day J(1991)On growth in Gaussian elimination with pivoting SIAM J. Matrix Anal. Appl. 12 354-26
  • [6] Peterson B(1961)Hadamard matrices of order 16 J.P.L. Research Summary No.36-10 1 21-743
  • [7] Edelman A(2009)The growth factor of a Hadamard matrix of order 16 is 16 Numer. Linear Algebra Appl. 16 715-176
  • [8] Mascarenhas W(1998)Skew Hadamard matrices and the Smith normal form Designs Codes Cryptogr. 13 173-310
  • [9] Gould N(2003)The maximal determinant and subdeterminants of ±1 matrices Linear Algebra Appl. 373 297-253
  • [10] Hall M(1873)Arithmetical notes Proc. Lond. Math. Soc. 4 236-475