Poly(lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering

被引:0
|
作者
Lihong Lao
Yingjun Wang
Yang Zhu
Yuying Zhang
Changyou Gao
机构
[1] Zhejiang University,MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering
关键词
Simulated Body Fluid; Composite Nanofibers; Composite Scaffold; Nanofibrous Scaffold; PLGA Scaffold;
D O I
暂无
中图分类号
学科分类号
摘要
Poly(lactide-co-glycolide) (PLGA) nanofibrous composite scaffolds having nano-hydroxyapatite particles (HAp) in the fibers were prepared by electrospinning of PLGA and HAp with an average diameter of 266.6 ± 7.3 nm. Microscopy and spectroscopy characterizations confirmed integration of the crystalline HAp in the scaffolds. Agglomerates gradually appeared and increased on the fiber surface along with increase of the HAp concentration. In vitro mineralization in a 5 × simulated body fluid (SBF) revealed that the PLGA/HAp nanofibrous scaffolds had a stronger biomineralization ability than the control PLGA scaffolds. Biological performance of the nanofibrous scaffolds of the control PLGA and PLGA with 5 wt% HAp (PLGA/5HAp) was assessed by in vitro culture of neonatal mouse calvaria-derived MC3T3-E1 osteoblasts. Both types of the scaffolds could support cell proliferation and showed sharp increase of viability until 7 days, but the cells cultured on the PLGA/5HAp nanofibers showed a more spreading morphology. Despite the similar level of the cell viability and cell number at each time interval, the alkaline phosphatase secretion was significantly enhanced on the PLGA/5HAp scaffolds, indicating the higher bioactivity of the as-prepared nano-HAp and the success of the present method for preparing biomimetic scaffold for bone regeneration.
引用
收藏
页码:1873 / 1884
页数:11
相关论文
共 50 条
  • [1] Poly(lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering
    Lao, Lihong
    Wang, Yingjun
    Zhu, Yang
    Zhang, Yuying
    Gao, Changyou
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2011, 22 (08) : 1873 - 1884
  • [2] Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering
    Kim, SS
    Park, MS
    Jeon, O
    Choi, CY
    Kim, BS
    BIOMATERIALS, 2006, 27 (08) : 1399 - 1409
  • [3] Chitosan/poly(dl,lactide-co-glycolide) scaffolds for tissue engineering
    S. A. Martel-Estrada
    I. Olivas-Armendáriz
    C. A. Martínez-Pérez
    T. Hernández
    E. I. Acosta-Gómez
    J. G. Chacón-Nava
    F. Jiménez-Vega
    P. E. García-Casillas
    Journal of Materials Science: Materials in Medicine, 2012, 23 : 2893 - 2901
  • [4] Chitosan/poly(DL,lactide-co-glycolide) scaffolds for tissue engineering
    Martel-Estrada, S. A.
    Olivas-Armendariz, I.
    Martinez-Perez, C. A.
    Hernandez, T.
    Acosta-Gomez, E. I.
    Chacon-Nava, J. G.
    Jimenez-Vega, F.
    Garcia-Casillas, P. E.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2012, 23 (12) : 2893 - 2901
  • [5] Boron containing poly-(lactide-co-glycolide) (PLGA) scaffolds for bone tissue engineering
    Dogan, Aysegul
    Demirci, Selami
    Bayir, Yasin
    Halici, Zekai
    Karakus, Emre
    Aydin, Ali
    Cadirci, Elif
    Albayrak, Abdulmecit
    Demirci, Elif
    Karaman, Adem
    Ayan, Arif Kursat
    Gundogdu, Cemal
    Sahin, Fikrettin
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2014, 44 : 246 - 253
  • [6] Carbon Nanotube–Poly(lactide-co-glycolide) Composite Scaffolds for Bone Tissue Engineering Applications
    Qingsu Cheng
    Katy Rutledge
    Ehsan Jabbarzadeh
    Annals of Biomedical Engineering, 2013, 41 : 904 - 916
  • [7] Biocompatibility and physicochemical characteristics of poly(ε-caprolactone)/poly( lactide-co-glycolide)/nano-hydroxyapatite composite scaffolds for bone tissue engineering
    Li, Xin
    Zhang, Shujiang
    Zhang, Xiao
    Xie, Siyu
    Zhao, Guanghui
    Zhang, Lifen
    MATERIALS & DESIGN, 2017, 114 : 149 - 160
  • [8] Poly(lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine
    Pan, Zhen
    Ding, Jiandong
    INTERFACE FOCUS, 2012, 2 (03) : 366 - 377
  • [9] Carbon Nanotube-Poly(lactide-co-glycolide) Composite Scaffolds for Bone Tissue Engineering Applications
    Cheng, Qingsu
    Rutledge, Katy
    Jabbarzadeh, Ehsan
    ANNALS OF BIOMEDICAL ENGINEERING, 2013, 41 (05) : 904 - 916
  • [10] Nanofibrous poly(lactide-co-glycolide) membranes loaded with diamond nanoparticles as promising substrates for bone tissue engineering
    Parizek, Martin
    Douglas, Timothy E. L.
    Novotna, Katarina
    Kromka, Alexander
    Brady, Mariea A.
    Renzing, Andrea
    Voss, Eske
    Jarosova, Marketa
    Palatinus, Lukas
    Tesarek, Pavel
    Ryparova, Pavla
    Lisa, Vera
    dos Santos, Ana M.
    Bacakova, Lucie
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2012, 7 : 1931 - 1951