Jackson Theorems for the Quaternion Linear Canonical transform

被引:0
|
作者
A. Achak
O. Ahmad
A. Belkhadir
R. Daher
机构
[1] University Chouaib Doukkali,Ecole Supérieure d’Education et Formation
[2] National Institute of Technology Srinagar,Department of Mathematics
[3] Ain Chock University of Hassan II,Department of Mathematics, Faculty of Sciences
来源
Advances in Applied Clifford Algebras | 2022年 / 32卷
关键词
Quaternion linear canonical transform; Generalized modulus of continuity; Dini–Lipschitz class; Bernstein theorem; Jackson’s theorem; Primary 43A62; 42B10; Secondary 42B37;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish Bernstein inequality, Jackson’s direct and inverse theorems for quaternion linear canonical transform using the functions with bounded spectrum.
引用
收藏
相关论文
共 40 条
  • [1] Jackson Theorems for the Quaternion Linear Canonical transform
    Achak, A.
    Ahmad, O.
    Belkhadir, A.
    Daher, R.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2022, 32 (03)
  • [2] Convolution theorems associated with quaternion linear canonical transform and applications
    Hu, Xiaoxiao
    Cheng, Dong
    Kou, Kit Ian
    SIGNAL PROCESSING, 2023, 202
  • [3] Discrete quaternion linear canonical transform
    Urynbassarova, Didar
    Teali, Aajaz A.
    Zhang, Feng
    DIGITAL SIGNAL PROCESSING, 2022, 122
  • [4] A new kind of convolution, correlation and product theorems related to quaternion linear canonical transform
    Li, Zhen-Wei
    Gao, Wen-Biao
    Li, Bing-Zhao
    SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (01) : 103 - 110
  • [5] A new kind of convolution, correlation and product theorems related to quaternion linear canonical transform
    Zhen-Wei Li
    Wen-Biao Gao
    Bing-Zhao Li
    Signal, Image and Video Processing, 2021, 15 : 103 - 110
  • [6] Spectrum of quaternion signals associated with quaternion linear canonical transform
    Prasad, Akhilesh
    Kundu, Manab
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2024, 361 (02): : 764 - 775
  • [7] Uncertainty Principles for The Quaternion Linear Canonical Transform
    A. Achak
    A. Abouelaz
    R. Daher
    N. Safouane
    Advances in Applied Clifford Algebras, 2019, 29
  • [8] Uncertainty Principles for The Quaternion Linear Canonical Transform
    Achak, A.
    Abouelaz, A.
    Daher, R.
    Safouane, N.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2019, 29 (05)
  • [9] Dini–Lipschitz functions for the quaternion linear canonical transform
    A. Bouhlal
    A. Achak
    R. Daher
    N. Safouane
    Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 : 199 - 215
  • [10] A Variation on Uncertainty Principles for Quaternion Linear Canonical Transform
    Khaled Hleili
    Advances in Applied Clifford Algebras, 2021, 31