Enhanced strain elements, frequently employed in practice, are known to improve the approximation of standard (non-enhanced) displacement-based elements in finite element computations. The first contribution in this work towards a complete theoretical explanation for this observation is a proof of robust convergence of enhanced element schemes: it is shown that such schemes are locking-free in the incompressible limit, in the sense that the error bound in the a priori estimate is independent of the relevant Lamé constant. The second contribution is a residual-based a posteriori error estimate; the L2 norm of the stress error is estimated by a reliable and efficient estimator that can be computed from the residuals.
机构:
Shandong Normal Univ, Sch Math & Stat, Jinan 250014, Peoples R ChinaShandong Normal Univ, Sch Math & Stat, Jinan 250014, Peoples R China
Zhang, Jin
Liu, Xiaowei
论文数: 0引用数: 0
h-index: 0
机构:
Qilu Univ Technol, Shandong Acad Sci, Sch Math & Stat, Jinan 250353, Peoples R ChinaShandong Normal Univ, Sch Math & Stat, Jinan 250014, Peoples R China
机构:
Natl Univ La Plata, Fac Ciencias Exactas, Dept Matemat, RA-1900 La Plata, ArgentinaNatl Univ La Plata, Fac Ciencias Exactas, Dept Matemat, RA-1900 La Plata, Argentina
Alonso, A
Dello Russo, A
论文数: 0引用数: 0
h-index: 0
机构:
Natl Univ La Plata, Fac Ciencias Exactas, Dept Matemat, RA-1900 La Plata, ArgentinaNatl Univ La Plata, Fac Ciencias Exactas, Dept Matemat, RA-1900 La Plata, Argentina
Dello Russo, A
Vampa, V
论文数: 0引用数: 0
h-index: 0
机构:
Natl Univ La Plata, Fac Ciencias Exactas, Dept Matemat, RA-1900 La Plata, ArgentinaNatl Univ La Plata, Fac Ciencias Exactas, Dept Matemat, RA-1900 La Plata, Argentina