共 37 条
[1]
Godunov S. K.(1959)Difference method for computing discontinuous solutions of fluid dynamics equations Mat. Sb. 47 271-306
[2]
Van Leer B.(1979)Toward the ultimate conservative difference scheme: V. A second-order sequel to Godunov’s method J. Comput. Phys. 32 101-136
[3]
Harten A.(1983)High resolution schemes for hyperbolic conservation laws J. Comput. Phys. 49 357-393
[4]
Jiang G. S.(1996)Efficient implementation of weighted ENO schemes J. Comput. Phys. 126 202-228
[5]
Shu C. W.(1998)An introduction to the discontinuous Galerkin method for convection-dominated problems, advanced numerical approximation of nonlinear hyperbolic equations Lect. Notes Math. 1697 150-268
[6]
Cockburn B.(2009)Compact accurately boundary-adjusting high-resolution technique for fluid dynamics J. Comput. Phys. 228 7426-7451
[7]
Karabasov S. A.(2002)A smoothness indicator for adaptive algorithms for hyperbolic systems J. Comput. Phys. 178 323-341
[8]
Goloviznin V. M.(2001)Runge–Kutta discontinuous Galerkin methods for convection-dominated problems J. Sci. Comput. 16 173-261
[9]
Karni S.(2020)Essentially non-oscillatory and weighted essentially non-oscillatory schemes Acta Numer. 29 701-762
[10]
Kurganov A.(2014)On the practical accuracy of shock-capturing schemes Math. Models Comput. Simul. 6 183-191