On the Accuracy of Discontinuous Galerkin Method Calculating Gas-Dynamic Shock Waves

被引:0
作者
M. E. Ladonkina
O. A. Nekliudova
V. V. Ostapenko
V. F. Tishkin
机构
[1] Federal Research Center Keldysh Institute of Applied Mathematics,
[2] Russian Academy of Sciences,undefined
[3] Lavrentyev Institute of Hydrodynamics,undefined
[4] Siberian Branch,undefined
[5] Russian Academy of Sciences,undefined
来源
Doklady Mathematics | 2023年 / 107卷
关键词
gas dynamic equations; shock waves; discontinuous Galerkin method;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:120 / 125
页数:5
相关论文
共 37 条
[1]  
Godunov S. K.(1959)Difference method for computing discontinuous solutions of fluid dynamics equations Mat. Sb. 47 271-306
[2]  
Van Leer B.(1979)Toward the ultimate conservative difference scheme: V. A second-order sequel to Godunov’s method J. Comput. Phys. 32 101-136
[3]  
Harten A.(1983)High resolution schemes for hyperbolic conservation laws J. Comput. Phys. 49 357-393
[4]  
Jiang G. S.(1996)Efficient implementation of weighted ENO schemes J. Comput. Phys. 126 202-228
[5]  
Shu C. W.(1998)An introduction to the discontinuous Galerkin method for convection-dominated problems, advanced numerical approximation of nonlinear hyperbolic equations Lect. Notes Math. 1697 150-268
[6]  
Cockburn B.(2009)Compact accurately boundary-adjusting high-resolution technique for fluid dynamics J. Comput. Phys. 228 7426-7451
[7]  
Karabasov S. A.(2002)A smoothness indicator for adaptive algorithms for hyperbolic systems J. Comput. Phys. 178 323-341
[8]  
Goloviznin V. M.(2001)Runge–Kutta discontinuous Galerkin methods for convection-dominated problems J. Sci. Comput. 16 173-261
[9]  
Karni S.(2020)Essentially non-oscillatory and weighted essentially non-oscillatory schemes Acta Numer. 29 701-762
[10]  
Kurganov A.(2014)On the practical accuracy of shock-capturing schemes Math. Models Comput. Simul. 6 183-191