Quasi-optimal partial order reduction

被引:0
|
作者
Camille Coti
Laure Petrucci
César Rodríguez
Marcelo Sousa
机构
[1] Université Sorbonne Paris Nord,LIPN, CNRS UMR 7030
[2] University of Oxford,undefined
[3] Diffblue Ltd,undefined
来源
Formal Methods in System Design | 2021年 / 57卷
关键词
Program analysis; Dynamic analysis; Partial-order reduction; Non-interleaving semantics;
D O I
暂无
中图分类号
学科分类号
摘要
A dynamic partial order reduction (DPOR) algorithm is optimal when it always explores at most one representative per Mazurkiewicz trace. Existing literature suggests that the reduction obtained by the non-optimal, state-of-the-art Source-DPOR (SDPOR) algorithm is comparable to optimal DPOR. We show the first program with O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathop {\mathcal {O}}(n)$$\end{document} Mazurkiewicz traces where SDPOR explores O(2n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathop {\mathcal {O}}(2^n)$$\end{document} redundant schedules. We furthermore identify the cause of this blow-up as an NP-hard problem. Our main contribution is a new approach, called Quasi-Optimal POR, that can arbitrarily approximate an optimal exploration using a provided constant k. We present an implementation of our method in a new tool called Dpu  using specialised data structures. Experiments with Dpu, including Debian packages, show that optimality is achieved with low values of k, outperforming state-of-the-art tools.
引用
收藏
页码:3 / 33
页数:30
相关论文
共 50 条
  • [1] Quasi-optimal partial order reduction
    Coti, Camille
    Petrucci, Laure
    Rodriguez, Cesar
    Sousa, Marcelo
    FORMAL METHODS IN SYSTEM DESIGN, 2021, 57 (01) : 3 - 33
  • [2] Quasi-Optimal Partial Order Reduction
    Nguyen, Huyen T. T.
    Rodriguez, Cesar
    Sousa, Marcelo
    Coti, Camille
    Petrucci, Laure
    COMPUTER AIDED VERIFICATION, CAV 2018, PT II, 2018, 10982 : 354 - 371
  • [3] OPTIMAL AND QUASI-OPTIMAL DESIGNS
    Martins, Joao Paulo
    Mendonca, Sandra
    Pestana, Dinis Duarte
    REVSTAT-STATISTICAL JOURNAL, 2008, 6 (03) : 279 - 307
  • [4] Quasi-optimal model reduction of discrete-time systems
    Universite de Bretagne Occidentale, , Brest, France
    Electron Lett, 16 (1521-1522):
  • [5] Quasi-optimal model reduction of discrete-time systems
    Brehonnet, P
    Derrien, A
    Vilbe, P
    Calvez, LC
    ELECTRONICS LETTERS, 1996, 32 (16) : 1521 - 1522
  • [6] Asymptotically Quasi-Optimal Cryptography
    de Castro, Leo
    Hazay, Carmit
    Ishai, Yuval
    Vaikuntanathan, Vinod
    Venkitasubramaniam, Muthu
    ADVANCES IN CRYPTOLOGY - EUROCRYPT 2022, PT I, 2022, 13275 : 303 - 334
  • [7] QUASI-OPTIMAL FEEDBACK LAWS
    MIZUKAMI, K
    VARSAN, C
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1982, 27 (10): : 1027 - 1051
  • [8] QUASI-OPTIMAL TRAINING ALGORITHMS
    TSYPKIN, YZ
    AUTOMATION AND REMOTE CONTROL, 1973, 34 (06) : 884 - 893
  • [9] Quasi-optimal polarization changer
    Bezborodov, V. I.
    Yanovskii, M. S.
    Knyaz'kov, B. N.
    Radioelectronics and Communications Systems, 1994, 37 (07):
  • [10] Stratonovich nonlinear optimal and quasi-optimal filters
    B. I. Shakhtarin
    Journal of Communications Technology and Electronics, 2006, 51 : 1248 - 1260