UNITARY GRASSMANNIANS OF DIVISION ALGEBRAS

被引:0
作者
NIKITA A. KARPENKO
机构
[1] University of Alberta,Mathematical & Statistical Sciences
来源
Transformation Groups | 2016年 / 21卷
关键词
Division Algebra; Chow Group; Central Simple Algebra; Central Division; Witt Index;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a central division algebra over a separable quadratic extension of a base field endowed with a unitary involution and prove 2-incompressibility of certain varieties of isotropic right ideals of the algebra. The remaining related projective homogeneous varieties are shown to be 2-compressible in general. Together with [17], where a similar issue for orthogonal and symplectic involutions has been treated, the present paper completes the study of Grassmannians of isotropic right ideals of division algebras.
引用
收藏
页码:115 / 127
页数:12
相关论文
共 28 条
[1]  
Bayer-Fluckiger E(1989)Self-dual normal bases Nederl. Akad. Wetensch. Indag. Math. 51 379-383
[2]  
Bayer-Fluckiger E(1995) ≤ 2 Invent. Math. 122 195-229
[3]  
Parimala R(2008)A proof of the Pfister factor conjecture Invent. Math. 173 1-6
[4]  
Becher KJ(1991)Function fields of generalized Brauer-Severi varieties Comm. Algebra 19 97-118
[5]  
Blanchet A(2005)Motivic decomposition of isotropic projective homogeneous varieties Duke Math. J. 126 137-159
[6]  
Chernousov V(2006)Motivic decomposition of projective homogeneous varieties and the Krull-Schmidt theorem Transform. Groups 11 371-386
[7]  
Gille S(2000)On anisotropy of orthogonal involutions J. Ramanujan Math. Soc. 15 1-22
[8]  
Merkurjev A(2012)Hyperbolicity of unitary involutions Sci. China Math. 55 937-945
[9]  
Chernousov V(2012)Incompressibility of quadratic Weil transfer of generalized Severi-Brauer varieties J. Inst. Math. Jussieu 11 119-131
[10]  
Merkurjev A(2012)Unitary Grassmannians J. Pure Appl. Algebra 216 2586-2600