Energy Transfer in a Fast-Slow Hamiltonian System

被引:0
作者
Dmitry Dolgopyat
Carlangelo Liverani
机构
[1] University of Maryland,Department of Mathematics
[2] II Università di Roma (Tor Vergata),Dipartimento di Matematica
[3] Via della Ricerca Scientifica,undefined
来源
Communications in Mathematical Physics | 2011年 / 308卷
关键词
Manifold; Invariant Measure; Negative Curvature; Limit Equation; Martingale Problem;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a finite region of a lattice of weakly interacting geodesic flows on manifolds of negative curvature and we show that, when rescaling the interactions and the time appropriately, the energies of the flows evolve according to a nonlinear diffusion equation. This is a first step toward the derivation of macroscopic equations from a Hamiltonian microscopic dynamics in the case of weakly coupled systems.
引用
收藏
页码:201 / 225
页数:24
相关论文
共 44 条
  • [1] Anosov D.V.(1967)Certain smooth ergodic systems Uspehi Mat. Nauk 22 107-172
  • [2] Sinai Ja.G.(2006)Energy transport in weakly anharmonic chains J. Stat. Phys. 124 1105-1129
  • [3] Aoki K.(2009)Thermal conductivity for a momentum conservative model Commun. Math. Phys. 287 67-98
  • [4] Lukkarinen J.(2010)Energy transport in stochastically perturbed lattice dynamics. Arch Rat. Mech. Anal. 195 171-203
  • [5] Spohn H.(2008)Thermal conductivity for a noisy disordered harmonic chain J. Stat. Phys. 133 417-433
  • [6] Basile G.(2007)Towards a derivation of Fourier’s law for coupled anharmonic oscillators Commun. Math. Phys. 274 555-626
  • [7] Bernardin C.(2009)Random walks in space time mixing environments J. Stat. Phys. 134 979-1004
  • [8] Olla S.(2009)A model of heat conduction Commun. Math. Phys. 287 1015-1038
  • [9] Basile G.(1998)Spectral rigidity of a compact negatively curved manifold Topology 37 1265-1273
  • [10] Olla S.(1998)On decay of correlations in Anosov flows Ann. Math. 147 357-390