Codes from curves with total inflection points

被引:0
作者
Cícero Carvalho
Takao Kato
机构
[1] Universidade Federal de Uberlândia,Faculdade de Matemática
[2] Yamaguchi University,Department of Mathematical Sciences, Faculty of Sciences
来源
Designs, Codes and Cryptography | 2007年 / 45卷
关键词
Geometric Goppa codes; Weierstrass semigroup; Pure gap; Total inflection point; Plane curve; Hermitian curve; 94B27; 14H50; 11T71; 11G20;
D O I
暂无
中图分类号
学科分类号
摘要
The concept of pure gaps of a Weierstrass semigroup at several points of an algebraic curve has been used lately to obtain codes that have a lower bound for the minimum distance which is greater than the Goppa bound. In this work, we show that the existence of total inflection points on a smooth plane curve determines the existence of pure gaps in certain Weierstrass semigroups. We then apply our results to the Hermitian curve and construct codes supported on several points that compare better to one-point codes from that same curve.
引用
收藏
页码:359 / 364
页数:5
相关论文
共 10 条
[1]  
Carvalho C.(2005)On Goppa codes and Weierstrass gaps at several points Des. Codes Cryptogr. 35 211-225
[2]  
Torres F.(1994)Weierstrass gap sequences at total inflection points of nodal plane curves Tsukuba J. Math. 1 119-129
[3]  
Coppens M.(1983)Algebraic-geometric codes Math. USSR-Izv. 21 75-93
[4]  
Kato T.(2001)Goppa codes with Weierstrass pairs J. Pure Appl. Algebra 162 273-290
[5]  
Goppa V.D.(1988)A note on Hermitian codes over IEEE Trans. Inform. Theory 34 1345-1348
[6]  
Homma M.(1992)( Lect. Notes Math. 1518 99-107
[7]  
Kim S.J.(undefined)) undefined undefined undefined-undefined
[8]  
Stichtenoth H.(undefined)On the true minimum distance of Hermitian codes undefined undefined undefined-undefined
[9]  
Yang K.(undefined)undefined undefined undefined undefined-undefined
[10]  
Kumar P.V.(undefined)undefined undefined undefined undefined-undefined