Sequence spaces derived by the triple band generalized Fibonacci difference operator

被引:0
作者
Taja Yaying
Bipan Hazarika
S. A. Mohiuddine
M. Mursaleen
Khursheed J. Ansari
机构
[1] Dera Natung Government College,Department of Mathematics
[2] Gauhati University,Department of Mathematics
[3] King Abdulaziz University,Department of General Required Courses, Mathematics, Faculty of Applied Studies
[4] King Abdulaziz University,Operator Theory and Applications Research Group, Department of Mathematics, Faculty of Science
[5] China Medical University (Taiwan),Department of Medical Research, China Medical University Hospital
[6] Aligarh Muslim University,Department of Mathematics
[7] King Khalid University,Department of Mathematics, College of Science
来源
Advances in Difference Equations | / 2020卷
关键词
Fibonacci difference space; Schauder basis; -, ; -, ; -duals; Matrix mappings; Compact operators; Hausdorff measure of non-compactness; 46A45; 46B45; 47B07;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we introduce the generalized Fibonacci difference operator F(B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf{F}(\mathsf{B})$\end{document} by the composition of a Fibonacci band matrix F and a triple band matrix B(x,y,z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf{B}(x,y,z)$\end{document} and study the spaces ℓk(F(B))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell _{k}( \mathsf{F}(\mathsf{B}))$\end{document} and ℓ∞(F(B))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell _{\infty }(\mathsf{F}(\mathsf{B}))$\end{document}. We exhibit certain topological properties, construct a Schauder basis and determine the Köthe–Toeplitz duals of the new spaces. Furthermore, we characterize certain classes of matrix mappings from the spaces ℓk(F(B))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell _{k}(\mathsf{F}(\mathsf{B}))$\end{document} and ℓ∞(F(B))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell _{\infty }(\mathsf{F}(\mathsf{B}))$\end{document} to space Y∈{ℓ∞,c0,c,ℓ1,cs0,cs,bs}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf{Y}\in \{\ell _{\infty },c_{0},c,\ell _{1},cs_{0},cs,bs\}$\end{document} and obtain the necessary and sufficient condition for a matrix operator to be compact from the spaces ℓk(F(B))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell _{k}(\mathsf{F}(\mathsf{B}))$\end{document} and ℓ∞(F(B))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell _{\infty }(\mathsf{F}(\mathsf{B}))$\end{document} to Y∈{ℓ∞,c,c0,ℓ1,cs0,cs,bs}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf{Y}\in \{ \ell _{\infty }, c, c_{0}, \ell _{1},cs_{0},cs,bs\} $\end{document} using the Hausdorff measure of non-compactness.
引用
收藏
相关论文
共 50 条
  • [41] On some classes of compact and matrix operators on the generalized weighted mean difference sequence spaces of fractional order
    S. Samantaray
    L. Nayak
    B. P. Padhy
    The Journal of Analysis, 2022, 30 : 483 - 500
  • [42] Binomial difference sequence spaces of fractional order
    Jian Meng
    Liquan Mei
    Journal of Inequalities and Applications, 2018
  • [43] Binomial difference sequence spaces of order m
    Meng, Jian
    Song, Meimei
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [44] New sequence spaces derived by using generalized arithmetic divisor sum function and compact operators
    Yaying, Taja
    Saikia, Nipen
    Mursaleen, Mohammad
    FORUM MATHEMATICUM, 2025, 37 (01) : 205 - 223
  • [45] On difference sequence spaces of fractional-order involving Padovan numbers
    Yaying, Taja
    Hazarika, Bipan
    Mohiuddine, Syed Abdul
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (06)
  • [46] On generalized means and some related sequence spaces
    Mursaleen, M.
    Noman, Abdullah K.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (04) : 988 - 999
  • [47] Some normed binomial difference sequence spaces related to the lp spaces
    Song, Meimei
    Meng, Jian
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [48] Sequence spaces derived by qλ ℓp spaces and their geometric properties
    Braha, Naim L.
    Yaying, Taja
    Mursaleen, Mohammad
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2024, 2024 (01):
  • [49] Measure of noncompactness of matrix operators on some difference sequence spaces of weighted means
    Mursaleen, M.
    Karakaya, V.
    Polat, H.
    Simsek, N.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (02) : 814 - 820
  • [50] Hausdorff measure of noncompactness of matrix operators on some new difference sequence spaces
    Abyar, Elahe
    Ghaemi, Mohammad Bagher
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,