Sequence spaces derived by the triple band generalized Fibonacci difference operator

被引:0
|
作者
Taja Yaying
Bipan Hazarika
S. A. Mohiuddine
M. Mursaleen
Khursheed J. Ansari
机构
[1] Dera Natung Government College,Department of Mathematics
[2] Gauhati University,Department of Mathematics
[3] King Abdulaziz University,Department of General Required Courses, Mathematics, Faculty of Applied Studies
[4] King Abdulaziz University,Operator Theory and Applications Research Group, Department of Mathematics, Faculty of Science
[5] China Medical University (Taiwan),Department of Medical Research, China Medical University Hospital
[6] Aligarh Muslim University,Department of Mathematics
[7] King Khalid University,Department of Mathematics, College of Science
来源
Advances in Difference Equations | / 2020卷
关键词
Fibonacci difference space; Schauder basis; -, ; -, ; -duals; Matrix mappings; Compact operators; Hausdorff measure of non-compactness; 46A45; 46B45; 47B07;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we introduce the generalized Fibonacci difference operator F(B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf{F}(\mathsf{B})$\end{document} by the composition of a Fibonacci band matrix F and a triple band matrix B(x,y,z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf{B}(x,y,z)$\end{document} and study the spaces ℓk(F(B))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell _{k}( \mathsf{F}(\mathsf{B}))$\end{document} and ℓ∞(F(B))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell _{\infty }(\mathsf{F}(\mathsf{B}))$\end{document}. We exhibit certain topological properties, construct a Schauder basis and determine the Köthe–Toeplitz duals of the new spaces. Furthermore, we characterize certain classes of matrix mappings from the spaces ℓk(F(B))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell _{k}(\mathsf{F}(\mathsf{B}))$\end{document} and ℓ∞(F(B))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell _{\infty }(\mathsf{F}(\mathsf{B}))$\end{document} to space Y∈{ℓ∞,c0,c,ℓ1,cs0,cs,bs}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf{Y}\in \{\ell _{\infty },c_{0},c,\ell _{1},cs_{0},cs,bs\}$\end{document} and obtain the necessary and sufficient condition for a matrix operator to be compact from the spaces ℓk(F(B))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell _{k}(\mathsf{F}(\mathsf{B}))$\end{document} and ℓ∞(F(B))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell _{\infty }(\mathsf{F}(\mathsf{B}))$\end{document} to Y∈{ℓ∞,c,c0,ℓ1,cs0,cs,bs}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf{Y}\in \{ \ell _{\infty }, c, c_{0}, \ell _{1},cs_{0},cs,bs\} $\end{document} using the Hausdorff measure of non-compactness.
引用
收藏
相关论文
共 50 条
  • [1] Sequence spaces derived by the triple band generalized Fibonacci difference operator
    Yaying, Taja
    Hazarika, Bipan
    Mohiuddine, S. A.
    Mursaleen, M.
    Ansari, Khursheed J.
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [2] On generalized Fibonacci difference sequence spaces and compact operators
    Yaying, Taja
    Hazarika, Bipan
    Et, Mikail
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (06)
  • [3] ON GENERALIZED FIBONACCI DIFFERENCE SPACE DERIVED FROM THE ABSOLUTELY p- SUMMABLE SEQUENCE SPACES
    Kilinc, Gulsen
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2019, 34 (05): : 903 - 925
  • [4] Compact operators on some Fibonacci difference sequence spaces
    Abdullah Alotaibi
    Mohammad Mursaleen
    Badriah AS Alamri
    Syed Abdul Mohiuddine
    Journal of Inequalities and Applications, 2015
  • [5] Compact operators on some Fibonacci difference sequence spaces
    Alotaibi, Abdullah
    Mursaleen, Mohammad
    Alamri, Badriah A. S.
    Mohiuddine, Syed Abdul
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [6] ALMOST DIFFERENCE SEQUENCE SPACES DERIVED BY USING A GENERALIZED WEIGHTED MEAN
    Karaisa, Ali
    Ozger, Faruk
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 19 (01) : 27 - 38
  • [7] Compactness of binomial difference operator of fractional order and sequence spaces
    Taja Yaying
    Anupam Das
    Bipan Hazarika
    P. Baliarsingh
    Rendiconti del Circolo Matematico di Palermo Series 2, 2019, 68 : 459 - 476
  • [8] Compactness of binomial difference operator of fractional order and sequence spaces
    Yaying, Taja
    Das, Anupam
    Hazarika, Bipan
    Baliarsingh, P.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2019, 68 (03) : 459 - 476
  • [9] ON SEQUENCE SPACES GENERATED BY BINOMIAL DIFFERENCE OPERATOR OF FRACTIONAL ORDER
    Yaying, Taja
    Hazarika, Bipan
    MATHEMATICA SLOVACA, 2019, 69 (04) : 901 - 918
  • [10] FIBONACCI DIFFERENCE SEQUENCE SPACES FOR MODULUS FUNCTIONS
    Raj, Kuldip
    Pandoh, Suruchi
    Jamwal, Seema
    MATEMATICHE, 2015, 70 (01): : 137 - 156